|  |  | \||||||||||| |
| :---: | :---: | :---: |
| AUTOMATION APPLICATIONS IN AN ADVANCED AIR TRAFFIC MANAGEMENT SYSTEM <br> Volume VA: DELTA Simulation Model - <br> User's Guide |  |  |
|  |  | gust |
|  |  | errorming Oigont |
|  |  |  |
| F. Auhor's |  | DOT-TSC-OS |
| 9. Pertorming Organizolion Nome ond Addre: TRW Incorporated* Westgate Research Park 7600 Colshire Drive Mchean VA 22101 |  | PPA OS 404/R450 |
|  |  | 11. Contract or Grant No. DOT-TSC $-512-5$ |
|  |  | 13. Type of Report ond Perio |
| U.S Sponsorng Agency Nome ond Addrass <br> Office of the Secretary <br> office of the Ass't. Sec. for Sys. Dev. E Tech. <br> Office of Systems Engineering <br> Washington DC 20590 |  | Final Report Nov. 72 to Ja |
|  |  | 14. Sponsoring Agency Cod |
|  |  | 15. Supplementary Noles  <br> *Under Contract to: U.S. Department of Transportation <br> Transportation Systems. Center <br> Kendall Square <br> Cambridge MA 02142  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
| The Advanced Air Traffic Management System (AATMS) program is along-range investigation of new concepts and techniques for controlling |  |  |
|  |  |  |  |  |  |
| air traffic and providing services to the growing number of commercial, |  |  |
| military, and general aviation users of the national airspace. This |  |  |
| study of the applications of automation was undertaken as part of the |  |  |
| AATMS program. The purposes were to specify and describe the desirable |  |  |
| extent of automation in AATMS, to estimate the requirements for man and machine resources associated with such a degree of automation, and |  |  |
|  |  |  |  |  |  |
| to examine the propsective employment of humans and automata as air |  |  |
| traffic management is converted from a labor-intensive to a machine- |  |  |
| Volume $V$ describes the DELTA Simulation Model. It includes all documentation of the DELTA (Determine Effective Levels of Task Automa- |  |  |
|  |  |  |  |  |  |
| tion) computer simulation developed by TRW for use in the Automation |  |  |
| Applications Study. Volume VA includes a user's manual, test case, and test case results, Volume VB includes a programmer's manual. |  |  |
|  |  |  |  |  |  |

PREES SUBJET TO Charge
17. Key Words Automation, Air Traffic 18. Distribution Stalement $^{\text {18 }}$

Control, Human Factors, Computers,
OOCUMENT IS AVAILAELE TO THE PUBLIC
Computer Architecture, Man-Machine
Interface, Advanced ATC System, THROUGH THE NATIONAL TECHNICAL Manpower Requirements, Failure INFORMATION SERVICE, SPRINGFIELD, Analysis

| 19. Security Classit. (of this report) |
| :---: | :---: | :---: | :---: |
| Unclassified |$\quad$| 20. Security Classif. (of thispago |
| :---: |
| Unclassified |$\quad$| 21. No. of Pages |
| :---: |

Section ..... Page
1.0 INTRODUCTION ..... 1.0-1
2.0 CONCEPT ..... 2.0-1
2.1 Kinematic and Error Algorithms ..... 2.1-1
2.2 Metering and Sequencing Algorithm ..... 2.2-1
2.3 Separation Assurance ..... 2.3-1
3.0 INPUT DATA SPECIFICATION ..... 3.1-1
3.1 Methodology ..... 3.1-1
3.2 Nomenclature ..... 3.2-1
3.3 Data Specifications ..... 3.3-1
4.0 CARD DECK PREPARATION ..... 4.1-1
4.1 Data Preparation ..... 4.1-1
4.2 Job Stream Setup ..... 4.2-1
5.0 OUTPUT REPORT SPECIFICATIONS ..... 5.1-1
5.1 Introduction ..... 5.1-1
5.2 DELTA Run Summary ..... 5.2-1
5.3 DELTA Post Processor Report ..... 5.3-1
6.0 TEST CASE ..... 6.1-1
6.1 Introduction ..... 6.1-1
6.2 Namelist Inputs for SFORAW ..... 6.2-1
6.3 List of Tape 5 ..... 6.3-1
6.4 DELTA Summary Report ..... 6.4-1
6.5 DELTA Post Processor Report ..... 6.5-1
7.0 ERROR AND WARNING MESSAGES ..... 7.1-1
7.1 Introduction ..... 7.1~1
7.2 SALSIM Diagnostics ..... 2.2-1
7.3 DELTA Diagnostics Messages ..... 7.3-1

## CONTENTS - VOL. VA

 (Continued)Section Page
8.0 TERMINAL GENERATION PROGRAM ..... 8.1-1
8.1 Introduction 8.1-1
8.2 Sequence Route Input Specification ..... 8.2-1
8.3 Escape Route Input Specification ..... 8.3-1
9.0 INTERARRIVAL TIMES GENERATION PROGRAM ..... 9.0-1
10.0 POST PROCESSOR PROGRAM ..... 10.0-1
APPENDIX REPORT OF INVENTIONS ..... A-1

## Figure

Page
2.1-1 Illustration of the Shape of a Jurisdiction 2.1-2
$\begin{array}{ll}\text { 2.1-2 } & \begin{array}{l}\text { Side Views of Two Jurisdictions Using the } \\ \text { Inverted Wedding Cake Structure }\end{array}\end{array}$
2.1-3 Top View of Sample Jurisdiction 2.1-5
2.1-4 Example of Jurisdiction 2.1-11
2.1-5 2.1-14
2.2-1 Examples of Terminal Structures 2.2-2
2.3-1 System Design - Hazard Evaluation 2.3-9
2.3-2 System Design - Conflict Resolution 2.3-14
2.3-3 System Design - Resume Course Event 2.3-22
3.1-2 Tape5 Data Organization 3.1-2
5.2-1 DELTA Run Summary, First Page 5.2-3
5.2-2 DELTA Run Summary, Example $1 \quad$ 5.2-4
5.2-3 DELTA Bun Summary, Exmaple 2 5.2-6
5.2-4 DELTA Run Summary, Example 3 5.2-8
5.3-1 Post Processor Task Summary by Jurisdiction 5.3-3
5.3-2 Post Processor Aircraft Summary, Example $1 \quad$ 5.3-4
5.3-3 Post Processor Aircraft Summary, Example $2 \quad$ 5.3-5
$\begin{array}{ll}\text { 8.1-1 } & \begin{array}{l}\text { Procedures for Running Terminal Generation } \\ \text { Program on CDC } 6 \times 00 / T S S\end{array} \\ 8.1-2\end{array}$
$\begin{array}{cl}\text { 9.0-1 } & \begin{array}{l}\text { Sample Input and Corresponding Output Produced } \\ \text { by SDATA }\end{array} \\ 9.0-2\end{array}$

## LIST OF TABLES - VOL. VA

Table Page
2.1-1 JURISDICTION DATA FOR EXAMPLE IN FIGURE 2.1-3 2.1-6
2.1-2 INPUT DATA FILE FOR JURISDICTION DATA 2.1-7
4.2-1 JOB STREAM SETUP FOR DELTA SIMULATION AND
POST PROCESSOR 4.2-2

## LIST OF FIGURES - VOL. VA

Figure ..... Page
2.1-1 Illustration of the Shape of a Jurisdiction ..... 2.1-2
2.1-2 Side Views of Two Jurisdictions Using the Inverted Wedding Cake Structure ..... 2.1-3
2.1-3 Top View of Sample Jurisdiction ..... 2.1-5
2.1-4 Example of Jurisdiction ..... 2.1-11
2.1-5 ..... 2.1-14
2.2-1 Examples of Terminal Structures ..... 2.2-2
2.3-1 System Design - Hazard Evaluation ..... 2.3-9
2.3-2 System Design - Conflict Resolution ..... 2.3-14
2.3-3 System Design - Resume Course Event ..... 2.3-22
3.1-2 Tape5 Data Organization ..... 3.1-2
5.2-1 DELTA Run Summary, First Page ..... 5.2-3
5.2-2 DELTA Run Summary, Example 1 ..... 5.2-4
5.2-3 DELTA Bun Summary, Exmaple 2 ..... 5.2-6
5.2-4 DELTA Run Summary, Example 3 ..... 5.2-8
5.3-1 Post Processor Task Sunmary by Jurisdiction ..... 5.3-3
5.3-2 Post Processor Aircraft Summary, Example 1 ..... 5.3-4
5.3-3 Post Processor Aircraft Summary, Example 2 ..... 5.3-5
8.1-1 Procedures for Running Terminal Generation Program on CDC 6X00/TSS ..... 8.1-2
9.0-1 Sample Input and Corresponding Output Produced by SDATA ..... 9.0-2

```
LIST OF TABLES - VOL. VA
```

| $\frac{\text { Table }}{}$ |  | Page |
| :--- | :--- | :--- |
| 2.1-1 | JURISDICTION DATA FOR EXAMPLE IN FIGURE 2.1-3 | $2.1-6$ |
| 2.1-2 | INPUT DATA FILE FOR JURISDICTION DATA | $2.1-7$ |
| $4.2-1$ | JOB STREAM SETUP FOR DELTA SIMULATION AND <br> POST PROCESSOR | $4.2-2$ |

### 1.0 INTRODUCTION

This is Volume V-Book I of a five volume report produced for the Automation Applications Study of the Advanced Air Traffic Management System This volume describes the DELTA (Determine Effectiveness Levels for Task Automation) digital computer simulation model. The volume is divided into two books: Book I - User's Guide and Book II - Programmer's Guide.

The User's Guide is designed to permit an analyst to understand what the model simulates and how to exercise the model. It discusses the concepts from which the model was constructed. A complete input data specification and deck setup is described to show how cases are set up. A test case is provided to show how a case would look. Several auxiliary programs which are used to produce input files are described along with the Post Processor Program which is used to produce an additional output report for the DELTA model.

The Programmer's Guide is designed to give a programmer insight as to how the DELTA model was built and to enable him to make extensions or modifications to the model's code. There is a general discussion of the program structure and a description of the link structure and the system considerations.

There are detailed descriptions of the subroutines and the dynamic memory file structures. Samples of overlay structures are given and a list of subroutines which reference the files is shown.

1

1

1

1

1

1

### 2.0 CONCEPTS

The DELTA Model was designed to facilitate the analysis of air traffic management systems with primary emphasis on the utilization of the resources required to support such systems. This section will provide an explanation of the facilities and concepts making up the model. The model is based upon a highly generic functional analysis of air traffic control functions. For this reason, it is very generic itself, not tied to any particular air traffic management system, but capable of describing a wide variety of system concepts. For a description of this functional anlaysis, the reader is referred to Volume II of this report.

The model is composed of two principle portions: the functional analysis tasks and the algorithms. The algorithms are responsible for the motion of the aircraft through the system. They are discussed in some detail later in this section. The details of the functional analysis are to be found in Volume II of this report. Basically, the functional analysis began with seventeen functions, which were then broken into subfunctions. These subfunctions were subsequently subdivided into tasks. The task was defined to be the largest unit of work for which the man/ machine allocation determination was to be made.

The systems to be modelled are composed of men, machines and aircraft. The control functions are assigned to positions or "resource pools", in the terminology of the model. Each resource pool is assigned to a "jurisdiction", which is analogous to a control position asṣigned to a sector. Within the resource pool, the individual "resource element" is the performer. There are two types of resource pools: manual pools, containing one or more manual resource elements representing individual controllers belonging to particular job categories; and automated resource pools, containing an individual computer with a characteristic processing rate or speed.

Each task is assigned to one and only one resource pool per jurisdiction. The tasks are prioritized and task queues are generated should a backlog of tasks awaiting performance exist. The aircraft in the system are assigned to one and only one jurisdiction at a time, depending upon
their location. They may change jurisdictions as they transit the system geography. Resource utilization information is maintained on the resource element level.

The model treats eight phases of flight for the aircraft. These are as follows:

1. Preflight - the time from entering the system (before takeoff) and being given permission to takeoff
2. Takeoff - the time from being given permission to takeoff and leaving the runway
3. Departure Transition - the time from leaving the runway and being picked up by en route control
4. En Route - the time between leaving the departure airport and arriving in the arrival airport metering and sequencing pattern
5. Arrival Transition - the time between being placed in the metering and sequencing queue and being placed in the runway queue at the feeder fix arrival
6. Approach - the time the aircraft flies down the approach route, from the feeder fix to the gate and on to touch down
7. Landing - the time from touch down to leaving the runway
8. Missed Approach - the time from leaving the approach route to arriving at the feeder fix

The aircraft serve primarily as work initiators or service requestors. Each aircraft in the system under consideration requires certain controller attention, and is, therfore, responsible for using some amount of the resource pools' capabilities. For this reason, the aircraft have not been modelled in great detail with respect to kinematics. Their main purpose is to activate the functional tasks by requiring work.

The description of a particular air traffic management concepts is done through input to the model. By assigning tasks to manual or automated resource pools and defining the time requiements or instruction counts, responsible resource pool, and priority for each task, the user defines the system to be studied. By defining the geographic limits of the jurisdictions, the user controls the structure of the area under consideration. The user then determines the traffic loading for which the system will be exercised by defining the flight plans to be input. The user may cause
emergencies and other exogenous events to determine how the system would react to such events. The model inputs and outputs are described in Section 3 and 5 of this volume.

It is through strict adherence to the genericity of the analysis that no changes in the software need be made in order to model a variety of air traffic management concepts. This places a heavy burden upon the user to define the system through inputs. It does, however, provide a flexible and useful tool to estimate the resource requirements of systems under study.

### 2.1 KINEMATIC AND ERROR ALGORITHMS

### 2.1.1 Jurisdiction

This section describes the jurisdiction geography and how to express this geography in the input file. Each jurisdiction defines an air space. It must be a right polygonal figure. Thus, each jurisdiction has the following properties:

- The sides are planar and are perpendicular to the ground
- The floor and ceiling are planar and are parallel to the ground
- A jurisdiction has no limit on the number of sides
- The shape of the floor and ceiling are arbitrary, i.e., these need not be convex.

Figure 2.1-1 illustrates the shape of a jurisdiction.
A jurisdiction can be made to slant by stacking right polygonal figures upon each other. Figure 2.1-2 illustrates this concept. It is called the "inverted wedding cake structure."

The input file contains data for defining the geographical structure of jurisdictions. This file contains the following information for each jurisdiction:

- Number of jurisdictions
- Maximum number of aircraft allowed in a jurisdiction
- Initial number of elements per resource pool
- Maximum number of elements per resource pool
- Indicator of resource type, manual or automated
- Altitude (feet) of the floor and ceiling of the jurisdiction
- ( $x, y$ ) coordinates ( $\mathrm{n} . \mathrm{mi}$ ) of the floor vertices (same as ceiling coordinates)
- Listing of jurisdictions adjacent to floor, ceiling, and each side of jurisdiction.

Going clockwise around the floor vertices, each vertex has associated with it a list of jurisdictions contiguous to the side of the vertex.


FIGURE 2.1-1 ILLUSTRATION OF THE SHAPE OF A JURISDICTION

Page 2.1-3


FIGURE 2.1-2 SIDE VIEWS OF TWO JURISDICTIONS USING THE INVERTED WEDDING CAKE STRUCTURE

For example, point 4 of jurisdiction $A$ in Figure 2.1-3 has associated with it the contiguous jurisdictions B and C listed in any order. The list would also have included any jurisdictions above or below $B$ and $C$ if they shared any side with jurisdiction $A$. The user can start at any vertex of a jurisdiction floor in moving clockwise, but must not repeat the first point in this list.

The list of jurisdictions contiguous to the floor or ceiling of a jurisdiction can be specified in any order.

Following are the formats for input data. A sample data file is shown in Table 2.1-2 for the San Francisco (SFO) area.

Data Items
Format

Quantity of resource pools, r
Jurisdiction name, left justified
Capacity of jurisdiction, if terminal-negative, number of runways
Ceiling altitude (feet)
Floor altitude (feet)
(A4, 1X, I10, 2F10.3)
(This card present only if jurisdiction is a terminal)
Random access record number on TAPE30 for terminal sequence route data
Probability of missed approach (IIO, F1O.O)

## Initial number of elements per

 resource pool$r$ times Maximum number of elements per
$r \geq 1$
resource pool
Indication of resource type (MAN = manual, AUT = automated)
(2I10, 1X, A3)

Page 2.1-5


FIGURE 2.1-3 TOP VIEW OF SAMPLE JURISDICTION

Page 2.1-6

TABLE 2.1-1 JURISDICTION DATA FOR EXAMPLE IN FIGURE 2.1-3

| NAME | LETTER | POINT NUMBER NOT NECESSARY FOR INPUT | POINTS |  | ALTITUDES |  | ADJACENT SECTORS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | x | $y$ | UPPER | LOWER |  |
| Menlo Final | A | $\begin{aligned} & 1 \\ & 3 \\ & 4 \end{aligned}$ | $\begin{aligned} & 632.4 \\ & 647.8 \\ & 64.14 \end{aligned}$ | $\begin{aligned} & 457.0 \\ & 448.2 \\ & 432.0 \end{aligned}$ | 50,000 | 0 | $\begin{aligned} & \mathrm{D}, \mathrm{E} \\ & \mathrm{~B} \\ & \mathrm{~B}, \mathrm{C} \end{aligned}$ |
| So. Feeder | B | $\begin{aligned} & 3 \\ & 6 \\ & 7 \\ & 8 \\ & 5 \\ & 5 \\ & 4 \end{aligned}$ | 647.8 650.7 602.8 604.7 635.5 641.4 | $\begin{aligned} & 448.2 \\ & 420.6 \\ & 433.4 \\ & 445.8 \\ & 448.2 \\ & 432.0 \end{aligned}$ | 50,000 | 0 | $\begin{aligned} & D \\ & C \\ & D, E \\ & C \\ & A \\ & A \end{aligned}$ |
| Sutro | c | $\begin{array}{r} 1 \\ 5 \\ 8 \\ 9 \\ 10 \end{array}$ | 632.4 635.5 604.1 608.8 632.1 | $\begin{aligned} & 457.0 \\ & 448.2 \\ & 445.8 \\ & 468.0 \\ & 468.0 \end{aligned}$ | 50,000 | 0 | $\begin{aligned} & A \\ & B \\ & D, E \\ & E \\ & E \end{aligned}$ |
| So. Enroute | D | $\begin{array}{r} 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 7 \\ 6 \\ 3 \end{array}$ | $\begin{aligned} & 644.8 \\ & 760.0 \\ & 760.0 \\ & 550.0 \\ & 550.0 \\ & 604.6 \\ & 602.8 \\ & 650.1 \\ & 647.8 \end{aligned}$ | $\begin{aligned} & 450.0 \\ & 450.0 \\ & 350.0 \\ & 350.0 \\ & 450.0 \\ & 450.0 \\ & 43.4 \\ & 420.6 \\ & 448.2 \end{aligned}$ | 50,000 | 0 | E <br> - <br> - <br>  <br> $E$ <br> $E$ <br> $B$ <br> $B$ <br> $B$ |
| No. Enroute | E' | $\begin{array}{r} 16 \\ 15 \\ 17 \\ 18 \\ 12 \\ 11 \\ 1 \\ 10 \\ 9 \end{array}$ | $\begin{aligned} & 604.6 \\ & 550.0 \\ & 550.0 \\ & 7600 \\ & 760.0 \\ & 644.8 \\ & 632.1 \\ & 632.1 \\ & 608.8 \end{aligned}$ | $\begin{aligned} & 450.0 \\ & 450.0 \\ & 550.0 \\ & 550.0 \\ & 450.0 \\ & 450.0 \\ & 468.0 \\ & 468.0 \\ & 484.5 \end{aligned}$ | 50,000 | 0 | D <br> - <br> - <br>  <br> A <br> C <br> C <br> C |

## TABLE 2.1-2 INPUT DATA FILE FOR JURISDICTION DATA



TABLE 2.1-2 INPUT DATA FILE FOR JURISDICTION DATA (Cont'd)

B 6

| 647.8 | 448.2 | 1 |
| :--- | :--- | :--- |
| 650.1 | 420.6 | 1 |
| 602.8 | 433.4 | 2 |
|  |  | $D$ |
|  |  |  |
| 604.1 | 445.8 | 1 |
| 635.5 | 448.2 | $C$ |
|  | 1 |  |
| 641.4 | 432.0 | A |
|  |  | $A$ |

0
0
C 5

| 632.4 | 457.0 | 1 |
| :--- | :--- | :--- |
|  |  | A |
| 635.5 | 448.2 | 1 |
|  |  | B |
| 604.1 | 445.8 | 2 |
|  |  | D |
|  |  | E |
| 608.8 | 484.5 | 1 |
|  |  | E |
| 632.1 | 468.0 | 1 |

0
0

## TABLE 2.1-2 Input data file FOR JURISDICTION DATA (Cont'd)




Figure 2.1-4 shows an example of a jurisdiction. There are four jurisdictions, $C, D, E$ and combined $A$ and $B$. Although shapes $A$ and $B$ are acceptable right polygons, the combined shape of $A$ and $B$ is not a right polygon.

### 2.1.2 Aircraft Motion

Subroutine MOVAC is responsible for all aircraft motion outside the terminal area. The subroutine is concerned with holding patterns, conflicts in flight schedules, jurisdiction boundary crossings, change in phases of flight, speed and navigational errors, tolerance corrections, turns in flight plan, aircraft velocities, and aircraft positions.

MOVAC is evoked in three ways. Firstly, at a time frequency set by the user, MOVAC schedules aircraft motion events for each aircraft up until the beginning of the next update time interval or until the next turn, whichever comes first.

Page 2.1-11


FIGURE 2.1-4 EXAMPLE OF JURISDICTION

Secondly, these scheduled events are processed by MOVAC for indiviual aircraft as they occur in simulation time. After each aircraft turns, MOVAC again schedules events for MOVAC up to the next turn or until the end of the current update time period. This recursive technique approximates quite adequately continuous aircraft motion.

Lastly, subroutines external to MOVAC schedule aircraft motion events for individual aircraft to be updated by MOVAC.

Following is the list of events triggering MOVAC and the resulting action by MOVAC. The motion events scheduled by MOVAC are jurisdiction boundary crossing, aircraft turning, and an aircraft flight plan being rescheduled due to a tolerance problem.

EVENT
Periodic update of all aircraft occurs. Planted by INITIA initially and subsequently by MOVAC itself.

Single aircraft is removed from metering and sequencing hold. Planted by MOVAC to occur at removal time.

Single aircraft crosses a jurisdiction boundary. PTanted by BNDRY or ACJBC2 subroutines of MOVAC.

A single aircraft incurs a conflict in its flight plan. Planted by subroutine CONDET, which discovers the conflict and modifies the aircraft flight plan.

A single aircraft reaches its next fixed point in its flight plan. Planted by CRASH, a subroutine of MOVAC, to occur at turn time.

A single aircraft reaches feeder fix. Planted by subroutine UDPOF.

ACTION
Move all aircraft not in a holding pattern. For each aircraft, Schedule motion events for time until next turn or until the end of current update cycle, whichever comes first.

Action is same as for periodic update above, but for this aircraft only.

Count of aircraft in each jurisdiction is adjusted. The aircraft is moved to its new jurisdiction at this time by subroutine T13301.

Cancel scheduled motion events for this aircraft in the current update cycle. Reschedule aircraft motion events for this aircraft on its new flight plan until it's next turn or until the end of the current update cycle, whichever occurs first.

Change alrcraft direction and velocity. Schedule a call to MOVAC to generate motion events for this aircraft.

Move the specified aircraft to its feeder fix.

EVENT
A single aircraft is out of
tolerance. Detection by subroutine
T07401 which calls TOLFX5, a sub-
routine of MOVAC.

A single afrcraft takes off (i.e., changes its phase of flight from preflight to flight). Planted by subroutines UDPOF T03000, or T04401.

ACTION

> If the tolerance problem can be solved by altering the flight plan of the aircraft, TOLFX5 cancels all motion events for aircraft, alters the flight plan, and plants a call to MOVAC to reschedule the aircraft motion events until its next turn or until the end of the current update cycle, whichever occurs first.

Initialize current velocity from zero to the intended velocity of aircraft between its first and second fixed point in its flight plan.

Following is a description of operations performed by MOVAC whenever an event above occurs.

OPERATION
Check if aircraft metering and sequencing or en route hold is necessary.

An aircraft approaches terminal area.

Perform operation if aircraft has not yet been processed by metering and sequencing.

A single aircraft filies out of system.

ACTION
If a hold is necessary, delay arrival times at fixed points in flight path. Place aircraft in appropriate type of hold.

Plant call to UDPOF to update phase of flight from "en route" to "approach". Place the aircraft in the arrival queue for metering and sequencing.

A flight area is projected for aircraft, considering its navigational and speed errors. This area is used by CONDET to determine if any flight conflict exists.

Plant a call from subroutine BNDRY to subroutine CANAC to cancel the aircraft from the system. Print an appropriate message.

### 2.1.3 Error Mode 1

The DELTA error generating model consists of two subroutines. One of these, FUNCTION SPEEB, calculates a speed bias for the aircraft; the other SUBROUTINE ACNE, calculates the navigation error of the aircraft.

## (1) FUNCTION SPEEB

FUNCTION SPEEB calculates a new speed bias for an aircraft, Three of the arguments are D1, D2, and the current value, VDEV, of the bias (or velocity deviation) for the specific aircraft. D1 and D2 are inputs, see p. 3.3-10. The new VDEV value is drawn from a distribution that is uniform between $-D 1$ and $+D 1$, with a height of $1 /(D 1+D 2)$, and is triangular from $-D 1$ to -D2 and from D1 to D2. (See Figure 2.1-5)


FIGURE 2.1-5

The fourth and final argument of the function is ILK. If ILK = 1, the new VDEV is drawn in a manner that is constrained by the current VDEV value. If ILK $=0$ no such constraint is enformed. This value of ILK is set in the routine which calls SUBROUTINE SPEEB.

It should be noted that this bias is held constant between consecutive corrections of the speed error.
(2) SUBROUTINE ACNE

This subroutine calculates the navigation error expressed as the positional error (EX, EY, EZ). There are basically three types of errors that are applied in simulating aircraft motion from point to point.


Constant error navigation system (such as a satellite). Indicated by $\operatorname{IERR}=1$.

Error grows with passage of time, but doesn't improve. Indicated by IERR $=2$.

Current system, in which plane has best information about position when passing over a navigation aid. This type of error is indicated within the subroutine by setting the variable IERR>2.

For each of these three error types, the errors applied to a given aircraft form an autocorrelated time series (within the time interval between two successive resettings of the error to 0 ).

These errors are summarized as follows:
a. NAVIGATION ERROR, CONSTANT $\sigma$

## Formula For Generating Error

Error sampled from normal $(\mu=0, \sigma)$, and autocorrelated with past observation by smoothing weight of $\alpha(0 \leq \alpha \leq 1)$.

Uses
Yields erroneous positions (explicitly) and (implicitly) erroneous headings. Can cause current deviations from tolerances.
b. NAVIGATION ERROR, ZERO AT FIX POINT, INCREASING $\sigma$ UNTIL NEXT FIX POINT

## Formula For Generating Error

Error sampled from normal $\left[\mu=0, \sigma=\left(\sigma_{\max }\right) *\left(1-e^{-K\left(t-t_{s}\right)}\right)\right]$, where
$K=a$ shape parameter, $t=$ current time, and $t_{s}=$ time aircraft passed starting point of current leg between Fix points). Autocorrelated (by using $\alpha$ ) with last previous error. If last previous error was found before or at $t_{s}$, last previous error is set = zero before autocorrelating with latest sample.

Uses
Same as a.
c. NAVIGATION ERROR, ZERO AT FIX POINTS, $\sigma$ INCREASES AND THEN DECREASES ALONG EACH LEG BETWEEN CONSECUTIVE FIX POINTS

Formula For Generation Error
$\sigma$ here $=[\sigma$ for 2. $] *\left[e^{-K_{3}\left(t_{f}-t\right)}\right]$, where $t_{f}=$ finish time for aircraft on current leg. Otherwise, identical to $b$.

Uses
Same as a.

The following variables appear in the calling list for SUBROUTINE ACNE.

IERR Error indicator for each aircraft. This specifies which of the three types of errors is being applied for this aircraft.

Autocorrelation coefficient
Shape parameter for the error used. AK>0.
Maximum sigma necessary to generate error
Present time
Time given aircraft passes the fixed point on the flight plan.

Time aircraft is scheduled to arrive at the next fixed point.

DELT
Time increment being used when ACNE is called.
(EX, EY, EZ)

### 2.2 METERING AND SEQUENCING ALGORITHM

### 2.2.1 Terminal Structure

Each modeled terminal is considered by the Metering and Sequencing (M\&S) algorithm to be one jurisdiction. Arriving traffic enters these jurisdictions through points called Feeder Fixes. (Initially, all aircraft flight plans end at a specific Feeder Fix (FF) at a specific terminal. The M\&S algorithm generates the remainder of the flight plan as shown below.) From each FF one or more Sequence Routes (SR's) carry traffic to the various runways. The $S R^{\prime}$ s are the representations of the 3-dimensional flight paths flown by the aircraft from the FF's to runways, and each SR consists of a finite sequence of linear legs that are connected end to end. Each SR can lead to just one runway or can branch at a "branch point" (BP) to feed two or more separate runways and each SR can have one or more branch points. Each $S R$ may be the only SR leading to one of its runways, or there may be two or more SR's feeding the same runway. In the latter case, the SR's must merge at a "merge point" that lies on an SR leg before the runway. Each runway at a given terminal is the last leg of an SR with no merge points or is the last leg of one of the unique paths through the SR and its set of merge points. Associated with each runway there is a "gate" located on the last leg of the SR path into that gate. Thus, each BP must precede the gates associated with the runways that the BP leads to. Aircraft that are departing from a terminal follow Departure Routes which are also sequences of linear legs and which lead into the en route flight paths. Each Departure Route (DR) has as its first leg one of the runways. For arriving aircraft that suffer missed approaches, there are Escape Routes (ER) associated with the SRs. The ER's are paths (piecewise linear) from specified points on SRs to specified FFs. An ER can lead from one SR to a FF for a different SR, but it must not be possible for an aircraft that was scheduled to use a particular runway and that suffers a missed approach to follow an ER and then not be able to get back to the same runway for which it was originally scheduled. Each $S R$ can have one or more ERs originating on it and each FF can have one or more ER terminating at it. Some examples of Terminal Structures are shown in Figure 2.2-1. Each unique combination of $S R$ and runway is called an $S R / R$ and is enclosed in the figure in a dashed line.

Note: The figures shown below are projections of 3 -dimensional $S R / R$ 's onto the horizontal plane used to represent the Earth's surface.
(1 SR/R)


### 2.2.2 Terminal Aircraft Motion

### 2.2.2.1 Arriving Aircraft

For each arriving aircraft, the $F F$ and runway to be used are prespecified (explicitly) and thus the $S R$ to be used is specified (implicitly). The only decision variables are the Runway Arrival Time (RAT) and Runway Clear Time (RCT) for the aircraft. Since for each aircraft we know its "type" (by some categories set up), and since for each type there is a constant Runway Occupancy Time, and since RCT $=$ RAT + ROT, the only true decision variable is RAT. Each aircraft scheduled to arrive at a given terminal is analyzed by M\&S some (specified) time interval prior to the arrival of the aircraft at the FF. In this analysis, a block of time (= in length to the ROT for aircraft) is set aside for the aircraft on the runway the aircraft is to use. This scheduling may allow the aircraft to arrive on time (or within specified tolerances of "on time") or may require the aircraft to be held for a length of time which is determined by the algorithm. Holding of an arriving aircraft is required only when other aircraft (arrivals and/or departures) have already been scheduled for blocks of time (or slots) on the same runway so as to interfere with the slot for the arriving aircraft (i.e., the slot which allows the aircraft to arrive precisely on time).

If there are no other aircraft scheduled for the same runway (arriving and/or departing) interfering with its motion, an arriving aircraft will be assigned to a specific path through a specific SR/R and will have a specified velocity vector (in 3 dimensions) for each leg of the path. This SR/R path and associated velocity vector set is called the Nominal Path (NP) for the aircraft. The runway is the last leg in the NP for an arriving aircraft which will "vanish" from the algorithm once it has reached the end of the runway.

However, if other aircraft are already scheduled for the same runway and if their schedules interfere with the NP schedule of the new arrival (see Section 2.2.3 for a discussion fo the types of interference that can arise), then the NP is adjusted by changing (within specified bounds) the velocity vectors for the legs of the NP. The velocity vector changes are made implicitly by changing the time required for the aircraft to cover
the NP. The maximum increase and decrease allowed in the nominal time are, respectively, $T_{R}$ (for retard) and $T_{A}$ (for advance). The quantities $T_{A}$ and $T_{R}$ and the way in which they are used are equivalent to the actual practice of maneuvering aircraft within some physical region about the ideal flight path (i.e., sending some aircraft out to the extreme points of the heading changes, while directing other aircraft to cut corners on certain heading changes, all for the purpose of sequencing the aircraft). Both $T_{A}$ and $T_{R}$ are initially positive quantities. The $T_{A}$ represents the absolute maximum increase in net speed over the $S R$, while the $T_{R}$ represents the maximum allowable decrease in speed without forcing the aircraft to be held. If it is necessary because of interference from other aircraft already scheduled for the runway to hold an arriving aricraft in order to schedule it, then its $T_{R}$ will be exceeded by the actual retardation made in its schedule. Whatever use is made of $T_{A}$ and $T_{R}$ for an arriving aircraft, it is given one speed that carries it from the FF to the start of the runway. Thus, once the runway slot has been found, the corresponding speed is determined and this speed is used as the aircraft speed for all legs of the SR but the last one. The runway speed is found from the runway length and the ROT. If a no hold slot is found for the aircraft, the velocity associated with the slot is generally different from the standard velocity for the NP. But for a hold solution, the velocity chosen for the aircraft is precisely the standard velocity since holding the aircraft takes care of any scheduling problems for the runway.

Since the last leg of the aircraft's flight coincides with the runway, it is necessary that the length of the leg = (the nominal speed for the aircraft in the SR) $x$ (the ROT).

### 2.2.2.2 Departing Aircraft

For each departing aircraft, the runway to be used is prespecified as is the sequence of fix points making up the Departure Route. The decision variables for departures are the RAT and the length of time (if any) for which the aircraft is to be held prior to departure.

As is done for arriving aircraft, each departing aircraft is analyzed by M\&S some time prior to the scheduled departure time, and a slot of runway time (equal in length to the aircraft ROT) is allocated to
the runway, Departing aircraft can be on time or they can be delayed (in a hold). If a hold is needed, the length of the hold is determined by the algorithm. Again, holding is needed in cases in which aircraft already scheduled for the same runway interfere with the desired nominal slot for the departure.

Departing aircraft initially have $T_{A}=T_{R}=0$. This prevents a departing aircraft from being given a departure time earlier than the original intended departure time. If a departure is to be held, $T_{R}$ will be $<0$ for the actual slot allocated for the aircraft. Since the speed of departing aircraft on and over the runway is explicitly not used by M\&S (all calculations are based upon the ROT), the speed value is set $=0$ within M\&S. However, the first leg of the aircraft flight plan coincides with the runway and the flight plan contains the time needed to cover this first leg and the speed of the aircraft for the leg. Therefore, the time must $=$ ROT and the runway speed must $=$ (the length of the runway) $/($ ROT $)$.

### 2.2.3 Constraints on Aircraft Motion

In scheduling aircraft (both arrivals and departures) for runway slots there are certain constraints on the motion of the various aircraft. These constraints which are built into the algorithm logic are described below:

## Basic Constraints

a) No two aircraft can occupy the same runway at the same time. For example, given aircraft number $i-1$, $i$, and $i+1$ scheduled for the same runway, we have

$$
\operatorname{RCT}(i-1) \leq \operatorname{RAT}(i)<\operatorname{RCT}(i) \leq \operatorname{RAT}(I+1)
$$

b) For each aircraft, RCT-RAT $\equiv$ ROT for that aircraft
c) No two landing aircraft scheduled to use the same runway can pass each other between the gate and the start of the runway (this holds no matter how many departing aircraft use the runway between the two arrivals).
d) In attempting to schedule a landing aircraft into a slot, if there are other landing aircraft already scheduled for the same runway, with at least one in front of (earlier than) and one in back of (later than) the trial slot for the new aircraft, and if (the speed of the closest front landing aircratt) < (the speed of the new aircraft) < (the speed of the closest rear landing aircraft), then
the new aircraft cannot be scheduled into the trial slot. This constraint has the effect of forming sequences of landing aircraft in which there are at least two aircraft and in which, from the front to the rear of each sequence, the aircraft speeds form a monotonic nondecreasing sequence.

## Constraints on Rescheduling of Aircraft

When an attempt to schedule an aircraft onto a runway is made, it may be found that other aircraft currently scheduled for the same runway interfere with the scheduling of the new aircraft into the desired slot. These forms of interference are as follows:
a) The time slot for an already scheduled aircraft intrudes into the slot for the new aircraft (this has the effect of making the slot for the new aircraft less than the proper ROT in size).
b) If the new aircraft is a landing aircraft, another landing aircraft (already scheduled) can pass the new aircraft between the gate and the runway.

To resolve the interference between the schedules of two aircraft (one already scheduled, the other new), an attempt is made to do one (or more) of the following:
a) Reschedule an already scheduled aircraft (either forward or backward as required) so as to eliminate overlapping runway slots and/or crossings between the gate and the runway.
b) Change the slot chosen for the new aircraft.

In using either or both of these techniques to solve the problems created by interference, the following constraints must be observed:
a) New aircraft cannot be advanced more than the $T_{A}$ value.
b) New aircraft cannot be retarded more than $T_{R}$ without creating a hold solution.
c) No aircraft can be rescheduled forward by an amount > its current $T_{A}$.
d) No arriving aircraft can be rescheduled backwards (retarded) by any amount to accommodate a new aircraft that is departing.
e) No aircraft that is currently in a hold slot (its $T_{R}$ is $<0$ ) can be rescheduled at all.
f) No arriving aircraft that has moved physically past its feeder fix can be rescheduled.
g) A departing aircraft can be rescheduled from a non-hold slot into a hold slot.
h) An arriving aircraft cannot be rescheduled from a non-hold slot into a hold slot.
i) In rescheduling aircraft to fit a new aircraft into a trial slot, only one aircraft may be rescheduled for any given trial slot.
j) In analyzing a trial slot, if rescheduling is required, it can be done at one end (early or late) of the slot at a time. This is a consequence of constraint i) and implies that each trial slot can be analyzed twice, once with rescheduling possible at the front and once with rescheduling possible at the rear.

### 2.2.4 Optimization Logic in M\&S

The possible types of slots for any aircraft are listed below in decreasing order of preference (i.e., from "best" to "worst"). The optimization logic in the algorithm is concerned with finding the best possible slot for an aircraft.

1) A slot starting at the nominal RAT and ending at the nominal RCT and no rescheduling of other aircraft involved.
2) A slot starting no earlier than [(nominal RAT) - (nominal $T_{A}$ )] and ending no later than [(nominal RCT) + (nominal $T_{R}$ )].
3) The same as 2) but with some rescheduling of one other aircraft involved.
4) Any solution requiring holding of the new aircraft.

Solution types 1), 2), and 3) do not require holding of the new aircraft while type 4) does.

In order to find the best slot for an aircraft, the time interval starting at [(nominal RAT) - (nominal $T_{A}$ )] is searched by forming a sequence of trial slots and evaluating each until the best slot is found. Creation of new trial slots ends when the first slot in which a hold solution for the new aircraft is required has been found. Further details on the ranking of slots is found in the flow charts of subroutines METSEQ and BSTSLN.

### 2.2.5 Simplifications in the Algorithm

The current design of the M\&S algorithm contains the following six major simplifications, some of which have already been mentioned.

1. All aircraft flying over the same sequency route fly over precisely the same path, and the advance and retard times (TA and TR) are used to model the control a controller has over aircraft in metering and sequencing them.
2. Along the sequence routes, landing aircraft motion is not constrained so as to maintain minimum separation standards around the aircraft. Aircraft that are in metering and sequencing holds are unconstrained in the same way.
3. The conflict detection and resolution logic is not applied to aircraft that are in the M\&S holds, or that are arriving and have begun flying down their assigned sequence routes.
4. Arriving aircraft that are physically past their assigned feeder fixes, and departing aircraft that have not moved beyond the runway are not subject to errors (random or deterministic) in their motion.
5. For each arriving aircraft, the speed used in flying down the sequence route is the same for all legs of the sequence route (except for the last leg, which is the runway).
6. The initial values of TA for landing aircraft that are using the same sequence route is the same for all such aircraft regardless of the speed classes of the various aircraft. Similarly, initial TR values are assigned to each sequency route, each such value to be used for all aircraft flying down the corresponding sequence route.

### 2.2.6 Data Structure

There are four main parts to the data structure used by the algorithm. One of these contains data describing the terminals themselves (e.g., number of runways, number of feeder fixes, $T_{A}$ and $T_{R}$ for aircraft that are arriving, distances between the gates and the corresponding runways, nominal velocities for sequence routes, coordinates of points on sequence routes, etc.). Each terminal has its own such data structure.

The other three parts of the M\&S data structure are all files in dynamic memory. One of these three is the runway queue (RWQUE). There is one RWQUE for each runway at each terminal. Whenever the best slot for a new aircraft has been found an entry containing the information is made in the RWQUE for the runway to be used by the new aircraft. Thus, when an already scheduled aircraft may have to be rescheduled, the algorithm finds most of the data it needs to describe the aircraft to be rescheduled in the appropriate member in the appropriate RWQUE.

The basic data contained in the RWQUE are the pointer, the aircraft data file member for the aircraft, the runway arrival and clear times for the aircraft, the amounts of $T_{A}$ and $T_{R}$ currently available to the aircraft (after the current solution was formed), and the velocity to be used by the aircraft in flying from the feeder fix to the runway (if the aircraft is an arrival). For a departure, the velocity $=0$, as discussed above.

The second of the three file types used by M\&S is the Metering and Sequencing Queue (MSQUE), one of which exists for each terminal in the modeled system. Aircraft (both departing and arriving) that are to be processed by the M\&S are entered into the MSQUE for the proper terminal by other parts of the model (see Section 2.2.6 for more information on which parts of the model do this and how they interact with M\&S). Periodically, M\&S examines the MSQUEs for the various terminals. In this analysis, all aircraft in an MSQUE are given slots of time on the runway specified for them at the terminal owning the MSQUE, and then an entry for each of the aircraft is made in the RWQUE for the runway to be used by the aircraft. The primary purpose of the MSQUE (besides serving as a "list" of all aircraft to be processed by M\&S at each terminal) is to provide a means of ranking the aircraft so that they are processed in a certain order. All aircraft entered into an MSQUE are ranked low on a function of Speed Class and ETA (at feeder fix for arrivals, at runway for departures). In this way slow moving arriving aitrcraft tend to be processed before faster moving arrivals. Since the RWQUE's tend to be filled up from front to back, this tends to give early slots to slow moving aircraft and thus help to form the sequence of aircraft with monotonic nondecreasing speeds.

The final type of M\&S file to be discussed is the Terminal File. Each terminal has its own terminal file, which is used primarily to store pointers to the jurisdiction files, disk file entries, and aircraft in RWQUEs for the runways at the terminal.

### 2.2.7 Relationships Between M\&S and the Aircraft Motion Algorithm (MOVAC)

Departing aircraft are placed into the MSQUE for their departure terminal by the logic for Function 3 of the Functional Analysis a specified time interval prior to the original intended departure time of the aircraft. Then at the next periodic call to M\&S the aircraft is processed and is assigned to a slot in a RWQUE for one of the runways at the departure terminal. This slot may be a hold solution, in which case the aircraft will be delayed in departing. Whatever the type of slot that is found for the aircraft, the aircraft will stay in the RWQUE until the current time in the model = the actual departure time. Then the aircraft has its phase of flight changed from Preflight to Takeoff by the service routine UDPOF. The call to UDPOF contains the length of time the aircraft will be in Takeoff phase and the length of time the aircraft will remain in the next phase, Departure Transition. These two time intervals are used to plant calls to UDPOF for this aircraft for the ends of Takeoff and Departure Transition. At these times, UDPOF changes the phase of flight for the aircraft to Departure Transition and to En Route, respectively.

For arriving aircraft, MOVAC determines when each aircraft is within a specified time interval of reaching its feeder fix (this is determined by comparing current time and the intended time of arrival of the aircraft at its feeder fix). When an arriving aircraft has closed to within this time interval of its estimated time of arrival, ETA, at its feeder fix, MOVAC adds an entry for the aircraft to the MSQUE for the terminal to be used by the aircraft. Since the time interval (feeder fix ETA - insertion time) is greater than the M\&S period, it is quaranteed that each arriving aircraft will be examined by M\&S before arriving at the feeder fix. If M\&S determines that a hold is needed for an aircraft, the variable HOLDTM is set $=$ the length of the needed hold, the aircraft is put into M\&S hold status, and the arrival of the aircraft at the feeder fix is delayed by HOLDTM. A call to UDPOF is scheduled for the ETA at the feeder fix. In this call UDPOF changes the phase of flight from Arrival Transition to Approach (MOVAC changed it from En Route to Arrival Transition at the time the aircraft was placed in the terminal:s MSQUE). Part of the output from the processing of the aircraft in the next periodic
call to M\&S is a call to UDPOF planned to occur at the time the aircraft is first over the runway, and another call to UDPOF is planned for the time the aircraft will leave the runway. These calls serve, respectively, to change the phase of flight from Arrival Transition to Landing and to erase the aircraft from the model.

### 2.2.8 Algorithm Subroutines

The M\&S algorithm routines and their respective basic purposes are as follows:

| ADJUST | Used by RESCH and PFIND2 to store the original version of the current slots and slot data for new aircraft and to place the current trial slot (as possibly changed by PFIND1) into the RWQUE entries so that PFIND2 can read the slot as changed by PFINDI. If rescheduling of and aircraft is required by PFINDI, a similar shifting of slot data is carried out for the rescheduled aircraft. |
| :---: | :---: |
| BSTSLN - | Used by METSEQ to compare two non-hold solutions for the new aircraft and find the better of the two. |
| FACL | Used by PFINDI to find an advance time for the latter of a pair of landing aircraft using the same runway. This is the maximum advance time allowed without creating a gate/runway crossing for the two aircraft. |
| GRWCRS | Used by PFIND2 to determine if two landing aircraft scheduled for the same runway have a gate/runway crossing problem, and if so how much advance time for the later aircraft or retard time for the early aircraft is needed to solve the problem. |
| METSEQ | This is the main subroutine in the algorithm. It reads in all data, processes all terminals (one by one), processes all aircraft at each terminal (one by one, arrivals first and then departures), formulates trial slots, used PFIND1 and PFIND2 to evaluate the trial slots, finds (with the help of BSTSLN) the best slot for each aircraft, schedules the aircraft for the best slot, schedules calls to UDPOF for the aircraft, and changes the flight plan (TPQUE) for the aircraft as needed. |
| PFIND - | Used by METSEQ as an intermediate driver between METSEQ and (PFIND1 and PFIND2). |
| PFIND1 - | Used by METSEQ to analyze a potential slot for a departing aircraft and used by PFIND2 to perform initial analysis of a potential slot for an arrival. Can |

determine if a solution is possible in the trial slot and if rescheduling of another aircraft and/or of the new aircraft is needed to make the solution possible.

PFIND2 - Used by METSEQ to analyze a tentative slot for an arriving aircraft. Can provide the same type of information as can PFINDI.

RACIT - Used by METSEQ to store data about changes in the current solution for an aircraft when the aircraft is to be rescheduled to accommodate some other aircraft.

RACL - Used by PFIND1. Similar to FACL, but gives the retard time allowed for the earlier of the two landing aircraft without causing a gate/runway problem.

REAUST - Used by PFIND2 to reverse the data shifting accomplished by ADJUST. Puts what was the solution for an aircraft that tentatively was to be but isn't to be rescheduled back into the RWQUE entries for the aircraft.

RESCH - Used by PFIND2 to set into temporary variables a rescheduled version of the current official solution for an aircraft that must be rescheduled in order to accommodate an arriving aircraft.

R999 - USED BY PFINDl to determine if the solution found for an aircraft is a hold solution, and if so, how long the aircraft will be held.

SLOCH - Used by PFIND2 to make temporary changes in the current slot for a new arriving aircraft and to show the solution PFIND2 found for the aircraft.

UPTPQ - Used by METSEQ to add the fix points coordinates, leg speeds, and leg times for the sequence route to the flight plan for an arriving aircraft once the aircraft has been given its best slot.

VELCAL - Used by METSEQ and ADJUST to update the value of the sequence route velocity for an arriving aircraft when the slot for the aircraft is changed.

### 2.3 SEPARATION ASSURANCE

A basic function of the DELTA simulation logic is to predict when aircraft motions will result in a hazardous mid-air approach, and to maneuver the aircraft to avoid this hazard. This function must be performed with sufficient precision to assure realistic aircraft motion, and to properly trigger the various Air Traffic Management (ATM) tasks which will consume system resources when such mid-air conflicts occur.

In this section, the detailed lagic for performing this separation assurance is described. The model will utilize this algorithm in several contexts, and in both en route and terminal environments. This function will interact strongly with other essential model functions including metering, sequencing and spacing and en route sector capacity measures.

The separation assurance algorithm may be subdivided into three basic functions:

1. Conflict prediction - The initial detection of pairs of aircraft that may be in conflict;
2. Hazard evaluation - The assignment of a measure of risk to a possible conflict;
3. Conflict resolution - The determination of a maneuver or maneuvers that will result in a less hazardous situation for the aircraft pair and their neighbors.

### 2.3.1 General Algorithm Description

### 2.3.1.1 Conflict Prediction

The conflict prediction function is performed solely to relieve the data processing load on the hazard evaluation and conflict resolution algorithms. Since the hazard evaluation for a pair of aircraft can consume several hundred instructions, it is necessary to screen all potential aircraft pairs in the system ( $N(N-1) / 2$ total) so that only the more likely candidate pairs are processed for detailed probability calculations. This is best performed by a series of aircraft pair "filters" which, with very few computations, sequentially exclude a large fraction of the non-hazardous pairs. The particular set of filters suggested in this section was derived
from real-time conflict prediction logic designed for the ARTS system. The goal of this logic is to pass through all aircraft pairs which have a non-zero probability of conflict (within the specified time period), but as few extraneous pairs as is computationally profitable.

The general method suggested for conflict prediction is grid filtering on a synchronous basis; that is, the subroutine is called at regular time intervals. The grid filter procedure consists of dividing an airspace volume into "boxes" and placing each aircraft into a series of these boxes based on the aircraft's position, velocity, uncertainty area, and required miss distance. The uncertainty area is a composite of estimated track error plus error caused by lack of knowledge of aircraft intent projected for some future time. Any two aircraft placed in the same box are candidates for a conflict.

After this initial gross geometric filter has selected a relatively small subset of aircraft pairs for further evaluation, a series of more refined filters are applied to the surviving pairs. The first of these filters is an "old conflict" test. This test must check the history files (created in the hazard evaluation function described later) to insure that the conflict has not been previously detected and evaluated. Next, an altitude separation test, and a more detailed velocity closure test, are applied.

The time that the aircraft's current position is projected into the future would, on a real time system, be approximately equal to the required warning time (a system parameter). However, in the simulation model this will not be the case since the subroutine is exercised at relatively long intervals. Thus, the look-ahead, or projection time, will be larger than the system warning time. If the aircraft is not on a flight plan, the simulation can know that a conflict will occur before the ATC system detects it. This is true, for example, if the confict is caused by a turn of an aircraft. The detection of the conflict must be entered at the time the system would detect it. Thus all turns must be represented by the proper box placement, and VFR detection must be in two phases: what the system sees assuming straight line flight, and what the simulation knows from the stored flight plan.

Generally, the model will not distinguish VFR and IFR aircraft per se, but aircraft will be identified by whether the system has intent data and the degree of controlability that can be exercised. The use of VFR here denotes the lowest degree of control - the ATM system is not involved in maintaining the aircraft on a flight plan.

### 2.3.1.2 Hazard Evaluation

Once a possible conflict has been identified by the prediction algorithm it must be further evaluated to determine its collision potential, or risk. Ordering the possible conflicts by risk allows the simulation to respond consistently to the basic system definition parameters input to the model. The measure of risk used in the algorithm is the probability of violating a given miss distance within the warning time that is provided by the Air Traffic Management system. This probability is calculated from the geometric configuration of the two aircraft and the uncertainties inherent in their position and velocity data. The logic approximates the conditional probability that an aircraft will turn from its current course by a separate distribution which is superimposed on the track error distribution.

Considering the aircraft's current position, velocity, and acceleration, it is possible to project an ensemble of possible paths which the aircraft could follow. The probability associated with a particular. path from this ensemble is determined from two sources: variances in knowledge of the current velocity data, and uncertainty about the pilot's intent.

Uncertainty in the velocity vector (in particular, heading) is a major source of "spread" in the path ensemble. This uncertainty is usually approximated by the normal distribution of straight line paths symmetrically projected about the estimated heading of a non-turning track. Uncertainties in position are incorporated in the miss distance criteria. Uncertainties in intent will be approximated by an increase in spread of the path ensemble and a separate probability distribution. This seems consistent with the instant turn assumptions of the simulation and should give a realistic estimate of increase in workload due to lack of intent information.

It is important to model the intent uncertainties in the simulation since most future ATM system concepts include an IPC (Intermittent Positive

Control) separation mechanism. IPC commands generally consist of two types, positive commands and negative commands. Positive commands (i.e., commands that tell the pilot to take positive action) may be treated as resolution maneuvers; the only difference 15 in mode of communication and perhaps that the resolution algorithm will not take upon itself the responsibility of returning the pilot to his original course. Negative commands, however, are of the form "Do not turn right, Do not turn left," etc. They are preferred because they minimize interference with pilot intent. The evaluation algorithm is structured so that if it is possible to resolve a conflict by negative commands, this information will be available to the resolution and queueing module.

Output from the hazard evaluation will be a measure of risk, a minimum time before conflict, and when called from resolution, whether a negative IPC command will work. As a matter of course, once a conflict has been evaluated by the hazard evaluation algorithm, it will be entered in a history file, so that the conflict will not be reevaluated until necessary.

### 2.3.1.3 Conflict Resolution

The purpose of conflict resolution is to define a safe maneuver for an aircraft which is involved in a conflict. The maneuver must result in the measure of risk being reduced to an acceptable level. If appropriate, the resolution algorithm must also provide for the return of the aircraft to its intended flight path.

There are five basic maneuvers available for resolving a conflict:

- Negative IPC command (may be given to both aircraft simultaneously),
- Elimination of future scheduled fix,
- Level-off command,
- Positive horizontal maneuver, and
- Positive altitude maneuver.

The order in which these maneuvers are tried, and the elimination of any of them may be achieved via input data. The level of difficulty to the controller and thus, system response time (lag time) to initiation
of maneuvers, may also be controlled by the user. If both aircraft may be maneuvered the preference as to which aircraft to try first for any maneuver is determined by the priority assigned to the aircraft by the simulation.

Once a safe maneuver has been found, the resultant new fixes are inserted in the aircraft's track file. The old fixes are made inoperative by assigning a very large number to the expected time of arrival (ETA) at that fix. An event is planted so that before it is time for the aircraft to arrive at the last fix of his maneuver course, he is checked to see whether he may resume his planned course. If it is not safe to do this, a new fix and corresponding ETA is calculated, and another event planted for resuming course. If it is possible for him to resume course, needed fixes are inserted and the ETA's of his flight plan readjusted to be reasonable numbers again. If he has flown past any fixes while on his maneuver course they are eliminated from the file.

If an IPC-controlled aircraft is the non-maneuvering aircraft of a resolution, it is assumed that he is given a negative IPC command not to turn toward the maneuvering aircraft. In the case of a negative IPC maneuver, turns in the region of the negative command are eliminated from the files.

### 2.3.1.4 General Flow of Safety Assurance Logic

Conflict prediction is performed on a synchronous basis. When new conflicts are found, it will plant events that will trigger hazard evaluation at the proper time. Since the hazard evaluation will occur before the next conflict prediction cycle, conflict prediction need not worry about entering the conflict into history files. The hazard evaluation should occur at the expected time the hazard is observed by the system. The output from this routine will inform the system whether a resolution maneuver need be attempted. If the conflict was considered to be nonhazardous, an event that causes the simulation to reevaluate the conflict in the future is planted. Since realistically the results of the hazard evaluation affect the system response time to the conflict, it is performed before being entered into the resource queues. The risk measure and expected time of conflict influences its placement in the queue for the resource in question. When it is approximately time for a resolution
maneuver to be generated and sent, the resolution routine is called. The simulation will assign two parameters, which are used along with the level of difficulty of the maneuver to compute the system lag time for a maneuver. The maneuver is chosen considering this response or lag time information (as it will influence the risk involved in an individual aircraft's maneuver). The track file is changed to reflect the new aircraft velocity. Resolution will record the fact that a resolution maneuver has been planted. Resolution must also plant an event at the time that it expects the conflict to be resolved, and the aircraft revectored to its intended course. At the time of this revectoring, the conflict is checked to insure that it is safe to maneuver the aircraft, and a change vector is inserted into the track file if appropriate (this may not be necessary for VFR aircraft). An event must be planted to clear the history file and indicate to the track file that the conflict is resolved.

The alrcraft pair must also be checked on a periodic basis for hazard since the original computation is only valid for a fixed length of time. More detailed discussion of the types of data and logic required for the different functions will now be presented.

### 2.3.2 Conflict Prediction Design

The major input parameters for the conflict prediction logic include:
Track Data

$$
\begin{aligned}
& K_{N} \text { - KNOW - } \\
&(1,2,3,4,5) \text { - state of flight } \\
& \text { - aircraft is on flight plan }
\end{aligned}
$$

Systems Data

```
grid origin
```

grid size

BOXES (.) This is the table that controls box placement. It will incorporate the angular error (intent + sensor) and miss distance. It is a function of (speed class, heading class, KNOW)
tw - warning time
$t_{1 a}-\quad$ look-ahead time (how often CP called $+t_{w}$ )
$t_{d t}$ - time to detect unscheduled turn
Conflict prediction logic will perform all the "gross" filtering for potential conflicts. This will include the "old conflict" test. New conflicts that are detected will result in a hazard evaluation event being planted. These events may be planted at different times in the future if the look-ahead time used in conflict detection is different from the system warning time. This time difference arises only because the simulation will not be exercising conflict prediction as often as a real time system would.

There is a further programing consideration; the results of the gross filter (i.e., the filled grid, and the time that it was created) must be available to resolution so that it can insure that the maneuver it suggests does not cause a new conflict. This is accomplished by placing the grid data onto a disk file which may be accessed by resolution. In any case, CP is designed so that it is able to check one aircraft against others in its vicinity (keeping track of the fact that the times involved will not correspond) and exit without planting a conflict event (and giving instead a list of new conflicts).

CP must place aircraft in boxes on predicted flight path.
These paths may include turns. If the system is not supposed to know of the turn and the conflict would not occur without it, the hazard evaluation is scheduled for an appropriate time ( $t_{d t}$ ) after the turn and the conflict.

The conflict prediction logic will calculate as output the following data:

Filled grid on disk
Events containing:
IDA, IDB - track numbers of aircraft involved
KOLD - index in history file of conflict ( 0 - since CP only

### 2.3.3 Hazard Evaluation (Hazard)

The system design for Hazard Evaluation is depicted in Figure 2.3-1. This shows how it is called, its associated subprograms and results.

### 2.3.3.1 Data Requirements for Hazard Evaluation

The data utilized by hazard evaluation are divided into three categories:

- Data provided by the simulation itself
- Systems parameters by which the user can adjust the results of the computation, and
- Data used by the program in order to increase computational efficiency

The information received from the simulation includes the coordinates, the velocities, flight plans, priorities, whether or not the aircraft is on IPC, class of aircraft, the metering and sequencing switch, whether or not the aircraft is controlled, whether or not the aircraft is on a flight plan, the type of afrcraft, the speed that this type can attain, the turn radius that he can attain, the high and low altitude bound on his flight, normal climb rate, plus miss distance desired for this type of aircraft, horizontal and vertical. If the aircraft has altitude reporting equipment, this is also used in hazard evaluation since if there is no altitude known on the aircraft the hazard must be calculated on a two-dimensional model rather than a three-dimensional model.

The systems parameters needed are the combined probability distributions of the intent and sensor uncertainities, the high and low risk thresholds, the warning time used by the simulation, and the time between re-looks at non-hazardous conflicts.

The internal parameters include information such as the bounds on the sensor vs. intent areas, the number of steps in the ensembles of paths, and information from which the ensembles are calculated. Both of the latter two categories of information may be generated from simple input to an initialization routine.


FIGURE 2.3-1 SYSTEM DESIGN - HAZARD EVALUATION

### 2.3.3.2 Description of Flow

The hazard evaluation module may be called in three different ways: the first is by an event notice, the second is a call from the resolution model in order to recalculate the necessary parameters needed for the resolution of the conflict; and the third is as a calculator of hazard which is used by the various resolution routines to determine the effects of resolution maneuvers. When called by event notice, the event could have been planted either by the conflict prediction module, hazard evaluation itself, or the resolution module. Hazard evaluation will plant an event when the conflict is considered non-hazardous. It must keep checking to make sure that the aircraft don't change course and come into a hazardous situation, or that the current courses aren't hazardous beyond the lookahead time. The resolution module plants a hazard evaluation event on a synchronous basis because three is only a fixed look-ahead time for the planned resolution maneuver. Thus, we can only guarantee that a maneuver will be safe a certain amount of time into the future. This time is a system parameter (SP).

The first task of hazard evaluation, when it is called by event notice or the first call from resolution, is to put into various internal common blocks information regarding the aircraft. This is done by calls on routines FILHAZ and TURNT. FILHAZ fills up a common block that contains the information provided dynamically by the simulation. TURNT will fill what is called a turn table. This table contains the fixes scheduled for the aircraft during the look-ahead time in question. It uses the aircraft's flight plan file for this information. These two common blocks are then written out on a scratch file so that if the routine was really called from resolution, resolution can re-initialize the blocks whenever it needs to. Subroutine PATHS is then called and this subroutine will calculate the ensembles of paths for each aircraft. Since there may be various fixes for each aircraft within the look-ahead time, there can be more than one group of ensembles of paths. The ensembles will be written out on a temporary scratch file in the order in which they will occur. Whenever a turn occurs, the aircraft is moved along its expected value path up to the point of that turn and then the new expected value path is projected backwards in time from that point to the start time of the run. Thus, all ensembles
are created from the same start time. Hazard evaluation will then operate on each ensemble only in the time period for which it is valid. There will be three records written for each time slice. The first two records will contain velocities and the positions for the two aircraft. The third record will contain the difference in $X$ position, the difference in $Y$ position, the time in which the aircraft can violate minimum altitude requirements, the horizontal distance apart, and the beginning and the end time of these ensembles' validity.

Hazard evaluation now does some housekeeping functions such as zeroing out arrays, and choosing which index to use for the outer and inner loops. It will then start processing the ensembles that are on the file. After reading the data for a time slice of ensembles, HAZARD first calculates some parameters that will simplify the hazard calculation, and then chooses the direction of processing for each of the aircraft. This is done so that the processing can be speeded up by jumping out of the loop once the hazardous portion of the ensemble has been evaluated. Each combination of paths will be inspected to see the closest that the aircraft could come toward each other within the period in question. If they can violate the miss distance, they will be considered hazardous and the probability will be added to cumulative probability if this particular combination of paths has not created a risk before. The risk associated with each combination of paths will be stored in a matrix PMAT. Via this matrix we can insure that we do not add risk for a path twice. PMAT is also used later in order to calculate the risk given a negative. IPC command. On calculations of risk caused other than by the event notice or initial resolution call, once a risk has exceeded the risk threshold the program will jump out of the loops as it is not interested in the total amount of risk involved, but just whether it exceeds the threshold. All ensembles on the file are processed in this manner. Upon conclusion of the risk calculation, the program, if it has been called as a first call from resolution, will find the risk given negative IPC commands.

If the call was from an event notice, the routine will see whether the risk is greater than the higher threshold and if so, will create a notice for resolution to occur. In all cases for these new conflicts a history file will be created for the conflict. This is so conflict
prediction will not have to be checking continually for conflicts that are already known, and for which hazard evaluation should be maintaining a lookout. An interface file will be set up for conflicts that require resolution so that the resource allocation routine that is appropriate can know the minimum time to conflict, the risk involved in the conflict and the aircraft pair. This routine will then eventually call the resolution module. After adjusting the appropriate files, HAZARD returns control either to the simulation or the calling program.

There is one further complication in hazard evaluation and that is if one of the aircraft is circling. If both are circling, the risk will then automatically be set higher than the risk threshold. However, if only one aircraft is circling, a routine called HAZCRC will be called and this routine will calculate the hazard, given that one aircraft is circling. It does this in essentially the same way that HAZARD itself works, except that it calculates the results of one ensemble of paths against a circle created by the other aircraft. If the ensemble comes into contact with this circle within the time period in question, again risk will be accumulated into the variable RISK and the risk threshold may or may not be exceeded. HAZCRC counts on the whole pattern being placed into the aircraft flight plan as a series of points on a square. It will then calculate the center of that square and the radius of a circle that would inscribe it, and use this circle for calculation of the hazard. Upon conclusion of calculating the hazard, given one aircraft in a hold pattern, HAZCRC returns control to HAZARD and the housekeeping functions described previously will be performed.

### 2.3.4 Conflict Resolution

### 2.3.4.1 Data Requirements

The data required for conflict resolution is the same as for hazard evaluation with the addition of:

- Two parameters sent by functional analysis, and
- Internal arrays that describe the turn increments and associated values (these are generated by an initialization routine).


### 2.3.4.2 Logic Flow

RESOLV is the main driver of the resolution routines. Its design is shown in Figure 2.3-2. The five types of resolutions that may result from this driver were described in Section 2.3.1.3. These five levels of resolution may require different lag times, (i.e., different times at which the maneuver will start) which correspond to different levels of difficulty for the controller. Therefore, the program has been written so that the user can both choose the order in which he would like these five different types of resolution maneuvers to be tried, plus assign to them a value, which may or may not be the same for all five types. This value will be used in combination with two parameters sent to the resolution routines by the functional analysis. A linear combination of these three values produces a lag time for the maneuver. Every maneuver will be checked to see whether it is safe in the "near future," defined by a system parameter, TLOOK, which is different from the warning time of hazard evaluation. The concept of safety will include both safety with the present conflicting aircraft and safety with all other aircraft in this system. For maneuvers involving a change in flight plan there will also be calculated a time to resume course. This time will result in a planting of an event for the routine RSCRSE which will turn the aircraft back on its course. RSUME calculates this time and insures that the aircraft will not be turned more than ninety degrees in either direction. In other words, RSUME chooses the fix (via FNDFX) that is along his path in the forward direction if at all possible. If this is not possible, for instance if he's going to land, the aircraft has to be turned back on its course. If one aircraft is circling, in a hold pattern, the other aircraft will be selected for a horizontal meneuver. No other types of resolution maneuvers are considered for this case.

The first task of RESOLV is to call HAZARD to recalculate all the parameters needed by HAZARD or RESOLV and find the risk of the conflict. If the risk is now lower than the risk threshold, no more is done with this case and the routine will act like it is a non-hazardous maneuver which HAZARD would have found. The routine next performs some housekeeping, such as zeroing out certain arrays and finding indices in the maneuver history table for both aircraft, if the indices exist (Subroutine FMAN). The


FIGURE 2.3-2 SYSTEM DESIGN - CONFLICT RESOLUTION
maneuver history table indicates the types of maneuvers that have been given to each aircraft previously. This is needed since one does not wish to give conflicting maneuvers. Next, the preference for maneuvering the aircraft is chosen by the routine IPREFR. This preference is based solely on the priority given to it in the aircraft file. Each aircraft is assigned a priority and it is assumed that the aircraft with the higher priority is the one that should be maneuvered, if possible. The order in which the aircraft are selected will be the same for all levels of maneuver. Within each level both aircraft are looked at for maneuver, if it is possible to maneuver both. From this point on, the routine simply goes through the levels of resolutions according to the input parameters. If at any point a resolution maneuver is found, the routine files the maneuver using a routine called POST.

The calculation of RISK, given an elimination of fix or a level-off command, is performed directly by RESOLV using calls to ELIM and HAZARD. ELIM is used to create a file which reflects the change of course desired. It works from the master file created on RESOLV's initial call to HAZARD. If the maneuver is deemed safe by HAZARD, INTALT is called to determine the safe time to resume course, whether the maneuver is conflict free with other aircraft, and eventually, in the case of a safe maneuver, the maneuver is posted via POST.

### 2.3.4.3 Horizontal Maneuvers (RSLVIT)

The horizontal maneuver routine is named RSLVIT. This routine first forces the aircraft to fly level after the lag time (TLAG) that is computed according to the level of difficulty of the maneuver. It then calculates a direction of turn. This direction of turn will be away from the other aircraft. Here, "away" is defined as being in the opposite direction of the cross product between the aircraft's position and velocity. If the desired direction of maneuver is different from a previous command that has been given to the aircraft and this command is still active then the aircraft will not be processed any further. If this were not done, then we would have the rather ridiculous situation of having an aircraft snake through the sky. Besides, presumably he will be turned back on course at the soonest possible time. Thus, if the maneuvers in the opposite direction of a previously given command were allowed, we would be turning the aircraft
back into a conflict that had just been resolved. The aircraft is then stepped through various maneuvers. This is acheived by precomputed tables which consist basically of sines and cosines and are based on an input delta turn that is required. This turn that is chosen for the difference between successive attempts at resolution should be picked such that turns of 90 degrees and 180 degrees come out even in the table. The finer the turn increment chosen, such as 10 degrees, the more time the routine will take, and the less drastic the maneuvers that will be given. Thirty degrees is the maximum delta step that should ever be tried.

When a maneuver is being considered for resolution the new velocities or bearings can be computed from the original expected value bearings. The position that the aircraft will be on his turn circle is calculated. The distance of closest approach is then calculated and if this is greater than the miss distance the maneuver is checked via HAZARD with the entire ensemble of the other aircraft to see whether it is safe. If so, the entire ensemble of the maneuvering aircraft is turned the appropriate amount and checked agałnst the other aircraft's ensemble. Since each vector in the ensemble of paths will have to turn a different amount to achieve the same bearing there are different times to turn involved in this checking of the whole ensemble. The aircraft will be in a different position on his turn circle, and this position is projected backwards to the start time of the calculations. HAZARD is then called to see the risk involved between this one vector and all the vectors in the ensemble of paths for the other aircraft. This risk will be accumulated over all vectors of the maneuvering aircraft's ensemble and if the total risk exceeds the risk threshold a more severe maneuver is tried. If a maneuver is chosen, the results are placed into various arrays and control returned to the driver routine RESOLV.

RESOLV will then call TRNBCK which will set up the interface file for the checking for new conflicts caused by this maneuver. This rechecking is done by subroutine CHKIT, which calls RECHEK, an entry in conflict prediction, then further evaluates any conflicts that conflict prediction may find to see whether it is in truth a real hazard. This is done, of course, through subroutine HAZARD. If the maneuver is still deemed to be safe, RSUME is called in order to calculate the time that the aircaft can
turn back to its original course. RSUME tries various times to turn back in time increments and interpolates backwards once a safe time to turn back is found until the time that is safe and the time that is unsafe are within a pre-specified bound. Once a time to resume course (given the horizontal maneuver) has been found, TRNBCK will check whether it is quicker to hold the aircraft in a pattern and return him on his course after executing the hold pattern a specified number of times. First, a simple calculation is made to see whether the other aircraft's path intersects the holding pattern. If this is true, the horizontal maneuver is used as the maneuver of choice. However, if not true, a hold of an even number of circles is tried until a safe hold pattern is found that does not exceed the look-ahead time set by the simulation. If it is not safe to hold an aircraft beyond this time the horizontal maneuver will be chosen. The calculation of whether it is safe to hold an aircraft is acheived by retarding the holding aircraft's path by the amount of time required. Thus, there is adjusting of the existing ensemble file which will change the position and the velocities of the aircraft for that amount of time. This in effect creates a new intermeshing of fixes, since the time that the aircraft will reach each fix has been changed. This sorting of the existing file is performed and a new file is created without requiring any new computation of ensembles. This file is then used with the call to HAZARD to see whether the hold maneuver is safe. If the hold maneuver turns out to be safe and results in a return to course in shorter time than the horizontal maneuver did, then an interface file is set up so that this maneuver can be checked to make sure that it does not cause any new conflicts either. If it does, the horizontal maneuver is chosen. If it doesn't, then the hold maneuver will be chosen. The results of these calculations are sent to POST in order to change the aircraft fix file and post the maneuver.

### 2.3.4.4 Positive Altitude Maneuvers (PALT)

The routine to calculate positive altitude maneuver is PALT. This routine tries successive increments of altitude change. The increments are specified by system parameter, AINC. If the new altitude that would be acheived by this maneuver is either greater than the high altitude threshold of the aircraft or lower than the lowest altitude he can fly,
then the altitude maneuver will not be chosen. If it puts him at an altitude higher than the required minimum altitude separation then we know the risk of this maneuver is zero. Otherwise HAZARD must be called to calculate the hazard with this new maneuver. If a positive altitude maneuver has been chosen, the routine INTALT will be called in order to calculate the time the aircraft can resume its course and to post the maneuver. This same routine is also called in case of elimination of scheduled turns. INTALT fills up the interface array for CHKIT, which is the routine that checks for new conflicts caused by a resolution. If the maneuver was conflict free, it calls RSUME which calculates the time to resume course from the maneuver in question and then posts the resolution by subroutine POST.

### 2.3.4.5 Subsidiary Routines

Important routines that have been mentioned in connection with the resolution algorithms and as yet to be explained in detail are the routines CHKIT, RSUME, and TRYM. RSUME takes the interface file that was filled up for the routine CHKIT and figures out the time that it would take the aircraft to resume its course from that maneuver. To do this it must call FNDFX which takes a location and velocity vector and calculates the next fix where the aircraft will not be executing more than a $90^{\circ}$ turn with respect to its current path, if at all possible. This routine starts checking fixes from a given fix or from the beginning of the aircraft's queue (indicated by an initial fix value of zero). Besides calculating the horizontal fix that it should turn to it also calculates two other values, TILEV and TIFIX. TIFIX is the time the aircraft takes to get to that fix and TILEV is the time that it will take the aircraft to acheive the altitude of that fix. These two numbers may be different. If the numbers are different, then a new fix must be inserted into the file which will bring the aircraft to the intended altitude at its nominal climb or dive rate. The direction in which the aircraft must change altitude is returned via a parameter in the call sequence ZDT. It is not desired to calculate this time to level-off, this is indicated by the calling parameter NDCLEV. When TILEV and TIFIX are different, RSUME inserts a new fix at TILEV and then calculates the time to the actual fix. It sets an interface table for the routine TRYM, which when called, can take this
table and process it, interleaving it with the already known fixes of the other aircraft. After the aircraft has gotten back to the assigned fix, the routine will automatically pick up the remaining fixes on his original course. Thus; it is not necessary to fill up this interface table all the way to the look-ahead time desired. RSUME is called with a special parameter TSART, which is the time that the user desires the aircraft to stay on a level course. This is used primarily when an aircraft is changing altitude. Since it would not be good to have an aircraft dive for two minutes and then immediately start climbing again, there is a. parameter that the user can set which requires the aircraft to fly level for a certain amount of time before any new change of course is directed for him. Currently, the programs are set up so that on a horizontal maneuver the aircraft will resume course as soon as possible. However, on a change of altitude course, the aircraft will level-off for a given amount of time (TIMLEV) before he can resume his old altitude.

TRYM operates from a common block or fills up the block from the common that was set up for the CHKIT function. Basically, it projects ahead the non-maneuvering aircraft to the time of the first fix for the maneuvering aircraft. It then interleaves the fixes as they go along from the interface table. When that runs out, if there is still time left in the lookahead interval, it picks up the fixes that are recorded in the fix file for the maneuvering aircraft. Its output is an ensemble of paths or a group of ensembles of paths that reflect these new fixes for both aircraft within the time-frame in question.

CHKIT is a routine that checks a maneuver for new conflicts that the maneuver itself may cause. It works from an interface file which is set up by other programs and immediately calls RECHEK (an entry in the conflict prediction routine). RECHEK will fill up an interface file which will contain the number of conflicts in it and the IDs of the conflicting aircraft. If there are any new conflicts then CHKIT calls TRYM in order to establish a file from which it can work. It then starts processing the new conflicts one by one to insure that they are real conflicts in the sense that hazard detection would consider them conflicts. It calls FILHAZ to create a file for both aircraft and TURNT to create the turn table. TURNT is called with the parameter ID of the maneuvering aircraft. This
is so that his current flight plan fixes will not be put into the turn table and only the non-maneuvering aircraft's fixes are in the table. CHKIT will then process this table and create ensembles of paths for the non-maneuvering aircraft. It interleves them with the ensembles for the maneuvering aircraft and creates a file from which hazard evaluation can work. If at any point the hazard involved in the new conflict exceeds the threshold, the maneuver is rejected and a parameter (IRES) is set to one so the calling program will know that this maneuver is hazardous. If the maneuver is accepted as non-hazardous then the parameter IRES is set to zero and the calling program will know to post the maneuver. At the end of its processing CHKIT reads in from the master file created at the beginning of RESOLV to refill the common blocks with parameters that were calculated at that point, since they were destroyed with this operation.

POST is always the last subroutine called by the resolution module. Only after the maneuver has been accepted will the subroutine be called and the actual fixes in the file will be changed for the aircraft. Any new fixes will be inserted and all the fixes remaining in the file will be set to a maximum value that is internally set by the program. In addition, if any non-controlled aircraft that is IPC equipped has any turns in the near future toward the maneuvering aircraft the turns are eliminated from his flight plan. POST creates an entry and some internal history files which record the maneuver to an aircraft so that the aircraft was forced to level-off from perhaps a climb or a dive. This is also recorded in the files as it was probably important in resolving the conflict. Finally, the POST routine creates event notices so that the conflict will be looked at again within the next cycle and, if appropriate, also sets an event at the time to resume course. If the time to resume course for this maneuver was less than it was for a previous maneuver this event will not be generated. However, there may be spurious events generated. The resume course routine will handle these cases appropriately.

### 2.3.5 Resume Course Routine (RSCRSE)

RSCRSE will be called by an event notice in order to try to maneuver an aircraft back on course after a resolution maneuver. This aircraft will have been maintained in an internal history file so it is known by RSCRSE what the expected time to return to course should be.

This will be the greatest time calculated for any maneuver. If the time that the routine is called is not this time it simply returns and waits for the event planted at the proper time. If it is the proper time, it sets up the interface file used in checking for new conflicts which may have been created by a change of course (this has been previously described). It then calls subroutine CHKIT and checks for these conflicts. If there are no new conflicts created by returning to course, it removes the entries in the maneuver history files to indicate that this aircraft is no longer on a positive maneuver. It inserts any needed fixes into the course, removing the fixes that were inserted for the change of course, and returns the aircraft to its normal flight plan. This includes updating the expected time of arrival for all current fixes on the course to the new expected time of arrival. If it is not possible to return an aircraft to its course, it will simply reschedule another event in the future to try and turn the aircraft back on its course.

The system design of RSCRSE is shown in Figure 2.3-3.


FIGURE 2.3-3 SYSTEM DESIGN - RESUME COURSE EVENT

### 3.0 INPUT DATA SPECIFICATION

### 3.1 METHODOLOGY

The DELTA simulation reads input data from two files: TAPE5 and TAPE30. The TAPE5 file is composed of card images which define the particular scenario to be run. The TAPE30 file is a random access file containing terminal sequence route and escape route information beginning at the feeder fix and ending at the touchdown point. This file must be prepared previously using the off-line Terminal Generation Program. See Section 8.0 for a description of this program and its input specifications.

To set up a scenario, a number of different types of data are required. Figure 3.1-1 illustrates the relative order of these types of data and shows the DELTA subroutine which reads the data. The input value card which is read by XXSTRT contains the maximum size for the dynamic memory. This value should never exceed the dimension of the dynamic memory array IV in the MAIN routine. It is difficult to estimate accurately what value this dimension should be. To aid in estimating it, the "high water mark" or highest value of dynamic memory actually used is printed out in the DELTA run summary. Should it be necessary to increase the maximum size of dynamic memory, then the MAIN routine will have to be recompiled to change the dimension of IV. The variable MAXKXX on the SALSIM card should be changed to the same value as the dimension of IV to ensure the proper creation of data blocks in the dynamic memory.

The variables for each type of data are described in Section 3.3.

Page 3.1-2


FIGURE 3.1-1 TAPE5 DATA ORGANIZATION

### 3.2 NOMENCLATURE

The names of subroutines and certain variables related to the functional tasks were created according to the following convention:
affstt
where ff is the Function number
$s$ is the Subfunction number
tt is the Task number
and a is an alphabetic with the following characteristic:
$\mathrm{C}=$ Duration of one cycle of a periodic task (hrs.).
$F=$ Rate (inverse of frequency) of a periodic task.
$I=E L I S T$ block pointer (defined in Block Data).
$M=$ Mask for a test under mask.
$P=$ Probability of condition occurring.
$R=$ Requirement (comparison word for test under mask).
$T=$ Subroutine name containing referenced task.
For example T07105 would be the name of the subroutine modeling Task 7.1.5; P05103 would be a probability related to Task 5.1.3. In a few cases multiple entries were required in the same task. In those cases (e.g'., E07401, H08107, P082PR, P082RV) the letter assignment were necessarily arbitrary and do not possess mnenomic significance.

### 3.3 DATA SPECIFICATIONS

This section will describe each of the input variables which are read from the file TAPE5. The data is divided into the following groups:

SALSIM specifications
Namelist \$INP variables
Task allocations and times
Jurisdictions
Aircraft type
Exogenous events
Date and title card.

### 3.3.1 XXSTRT - SALSIM Specifications

| CARD NO. | NAME | COLUMNS | FORMAT | VALUE/DESCRIPTION |
| :---: | :---: | :---: | :---: | :---: |
| 1 | Maxevt | 1-6 | 16 | Largest type number used for the events in ELIST. Default $=$ 168. $\operatorname{Max}=275$. |
|  | MAXKXX | 7-12 | 16 | Size of the IV array (dynamic memory) in the user's program. |
|  | MDESX | 13-18 | 16 | Maximum size block to be destroyed. Blank $=16$. |
|  | MCXX | 19-24 | 16 | Maximum number of memory request allowed if the memory capacity is exceeded. If -1 , no memory requests will be allowed. Blank $=10$. |
|  | IREQXX | 25-30 | 16 | Maximum size block for each memory request. Blank $=1024$. |
|  | MAXBLK | 31-36 | 16 | Largest block size the user expects to create or use during the simulation. Blank $=130,000$. |

### 3.3.2 INITIA - Namelist \$INP Variables

P03000 - Probability that the preliminary flight plan needs no modification. Function 3 reflects the system resources utilized by a pilot when he prepares a flight plan. This probability is an indication of the pilot's skill in preparing the flight plan or the number of times he must review and restructure his flight plan until he is satisfied that it is suitable for submittal to the system. Two probabilities are used: 1) the probability that a single pass through the steps in preparing the flight plan will be adequate to submit the plan and 2) the probability that, given the first pass resulted in a plan that required further work, each subsequent pass through the function will result in an acceptable flight plan for submittal. P04201 - Probability of no discrepancy in the flight plan because of aircraft capability or status. This is the probability that the flight plan submitted by the pilot and renewed by the system will be consistent with aircraft capability and current status. It is handled as two probabilities. The first probability represents the first time the test is made. The second probability represents the subsequent tests of the same flight plan assuming that the flight plan was modified as a result of the original discrepancy.

P04202 - Probability of no discrepancy in the flight plan because of operational or environmental conditions. This is the probability that the flight plans submitted by the pilot and reviewed by the system will be consistent with such factors as weather, airspace restrictions, airport status, communications and navald status, and other air traffic management facilities. It is handled as two probabilities. The first probability represents the first time the test is made. The second probability represents the subsequent tests of the same flight plan assuming that the flight plan was modified as a result of the original discrepancy.

P04203 - Probability of no discrepancy in the flight plan because of probed conflict detection. This is the probability that the flight plan submitted by the pilot and reviewed by the system will not have inconsistencies or create conflicts with other approved flight plans. It is handled as two probabilities. The first probability represents the first time the test is made. The second probability represents the subsequent tests of the same flight plan assuming that the flight plan was modified as a result of the original discrepancy.

P04205 - Probability of no discrepancy in the flight plan because of rules and procedures. This is the probability that the flight plan submitted by the pilot and reviewed by the system will be consistent with rules, regulations, minimum standards, and procedures. It is handled as two probabilities. The first probability represents the first time the test is made. The second probability represents the subsequent tests of the same flight plan assuming that the flight plan was modified as a result of the original discrepancy.

P04206 - Probability of no discrepancy in an airfiled flight plan because of flight progress. Given that a pilot airfiles a flight plan, this is the probability that the aircraft will be at the beginning point of the airfiled flight plan at the specified time.

P04207 - Probability of no discrepancy in the flight plan because of user class and pilot for that flight. It is handled as two probabilities. The first probability represents the first time the test is made. The second probability represents the subsequent tests of the same flight plan assuming that the flight plan was modified as a result of the original discrepancy.

P04401 - Probability that the pilot will not accept the flight plan with modifications. Given that the pilot's original flight plan had to be modified, this is the probability that the pilot will not accept the approved flight plan with the modifications.

P04402 - Probability of the pilot resubmitting a flight plan after rejecting. Given that the pilot rejected the flight plan because of revisions made by the system, this is the probability that he submits a new (revised flight plan).

P05101 - Probability that the aircraft identification code is required. This probability depends upon the particular air traffic management system. Up to eight user class categories can be used.

C05102 - Maximum permissible duration of one repetition of Task 5.1.2. This is the length of time to determine if the aircraft is approaching the


P05103 - Probability of a retry in approach. Given that an approach is missed, this is the probability that an aircraft will attempt again to land at the same airport, as opposed to going to the alternate airport. TLKAHD - Look ahead time for 7.1.1 used in 5.2.3. When determining the clearance limit ( $X, Y$, altitude, time) it is necessary to look ahead to determine if there are no medium term conflicts with other intended timeposition profiles.

C05302 - Maximum acceptable time for pilot response to clearance. After the system transmits a clearance to the pilot, it allows a certain time for the pilot to respond. It is also the maximum time allowed if no response is forthcoming.

F06100 - Time between updating Task 6.1. Task 6.1 consists of updating the aircraft current position. This input represents how often aircraft position is updated by the system.

C061AU - Maximum permissible duration of the processing period for the automated portion of the aggregated tasks: Subfunction 6.1, Task 6.2.2, Task 6.3.1, Task 6.3.2. The definition of these tasks are:

Subfunction 6.1 - Determine Present Aircraft Position
Task 6.2.2 - Update Aircraft Actual Time and Position Profile

Task 6.3.1 - Derive Rate of Change of Position
Task 6.3.2 - Compute Short-Range Extrapolations
C061MN - Maximum permissible duration of the processing period for the manual portion of the aggregated tasks: Subfunction 6.1, Task 6.2.2, Task 6.3.1, Task 6.3.2. This input is similar to CO6lAU except it represents manual times.

F07103 - Time between repeating Task 7.1.3. The purpose of this task is to determine the correct portion of the time-position profiles to be compared for long-term conflicts.

C07103 - Maximum permissible duration of the processing period for Task 7.1.3. This time is the maximum time that the resource pool may be set busy doing the large block of processing done by Task 7.1.3. Since the number of aircraft to be processed are derived from this time, it may be sensitive to the maximum time for Tasks 7.1.3 or 7.1.4.

P07104 - Probability that there will be no long-range conflicts among flight plans for this aircraft. The long-range time is defined by input TLKAHD in Function 5.

P07201 - Probability that there will be no current out-of-tolerance when the tolerances have been expanded. Given that the flight has exceeded the specified tolerances, the tolerances may be expanded on a temporary basis to cover certain situations. This is the probability that the flight will not exceed the expanded tolerances.

E07401 - Maximum time that expanded tolerances can be applied. This is the upper limit on how long the tolerances may be expanded on a temporary basis to cover certain situations.

F07201 - Time between repeating Task 7.2.1. Task 7.2.1 determines the time associated with the latest report of aircraft position and determines the aircraft's intended position at current time.

F07301 - Time between repeating Task 7.3.1. Task 7.3.1 determines future time-position dața points by selecting the portions of the intended timeposition profile corresponding in time and length to the short and long range predictions.

P07302 - Probability that there is not a short-range deviation exceeding tolerances for aircraft. This figure is based on a forecast that looks several minutes ahead to predict whether an aircraft may exceed tolerances.

F08101 - Time between repeating Task 8.1.1. Task 8.1 .1 selects an airspace volume and time interval to be used for conflict prediction.

F08102 - Time between repeating Task 8.1.2. Task 8.1.2 predicts the path of an aircraft in terms of the probability that the aircraft will be located in a given area at a given time.

F08103 - Time between repeating Task 8.1.3. Task 8.1.3 identifies path prediction profiles in the selected airspace and time frame. This time determines the rate at which conflict prediction is carried out.

F08105 - Inverse of F08103.
H08107 - Conflict imminence threshold. This input is used to determine whether a pair has a high imminence of conflict. It is the minimum time to conflict if an aircraft moves directly toward another aircraft. If the imminence determined by the hazard evaluation algorithm is less than H08107, then the pair is considered to have high imminence. Imminence and probability of conflict are evaluated to determine required action.

F08108 - Frequency of careful monftoring task. Given that a low probability of conflict, high imminence pair exists; this input is the number of times the pair is monitored for unexpected deviations each time the potential hazard exists.

P082PR - Probability that a pilot will respond to conflict resolution message. After the hazard evaluation algorithm determines that a performance change is needed, the performance change is determined and transmitted to the pilot. This input is the probability that the pilot will respond to the message.

P082RV - Probability that a performance change revision is required if there is no pilot response. Given that the pilot does not respond to the original performance change request, this is the probability that a further change is required, such as having another aircraft change performance.

REPLYT - Maximum time allowed for pilot to respond to performance change message. Given that the pilot does not respond to the original performance change request, this is the time the system will wait before deciding if a performance change revision is required.

F09100 - Time (in hours) between repetitions of subfunction 9.1, Maintain Predicted Arrival/Departure Schedule for Each Airport. That is, F09100 is the rate of this periodic subfunction.

C09100 - The maximum permissible duration (hours) of one repetition of subfunction 9.1. More specifically, one repetition of 9.1 ideally would encompass all aircraft in the jurisdiction; however, due to the work load on a controller, he may be required to accomplish other tasks in his task queue before this subfunction could be completed. Thus, the controller normalily would work on this subfunction for some maximum amount of time before going to his next task. This time is C09100.

P09202 - The probability that there will be an acceptable distribution of arrivals and departures at a terminal. Specifically, P09202 is the probability that there will be no excess demand andor slack in the predicted schedule of arrivals and departures.

P11000 - Probability that further vectoring is not required.
P11101 - P11101 is a three element vector, containing probability that vectoring is not required for (1) course, (2) speed, or (3) altitude respectively. This probability occurs in the DELTA model in three parts of the program corresponding to the type of vectoring desired.

C11502 - Maximum permissible time for pilot to respond to a vectoring message from the contraller.

P11503 - The probability that no retransmission of a vectoring message is required. That is, when a vectoring message has been given, the pilot may
(1) respond as commanded
(2) not respond as commanded, requiring a retransmission
(3) not respond as commanded, requiring a declaration of emergency.

The probability P11503 refers to (2).
P12104 - When the pilot requests information, this is the probability that this information requested is available. This information is provided under the function, Provide Flight Advisories and Instructions (Function 12).

M12202 - Maximum number of aircraft for the selective distribution of flight advisories. The system has the choice of distributing these advisories individually to aircraft or to all the aircraft simultaneously.

C12207 - Maximum permissible duration (hours) of one repetition of Task. 12.2.7, Correlate Present Position with Distribution Position (task from Provide Flight Advisories and Instructions). When a flight advisory is to be issued, aircraft must be issued the advisory at the advisory distribution point. This task monitors the aircraft to determine when they arrive at this distribtulon position.

C12301 - Maximum permissible duration (hours) of one repetition of task 12.3.1, Determine Endangered Aircraft, (i.e., determine aircraft that must be issued a flight advisory).

P12304 - This is the probability that the pilot desires vectoring around the advisory region (perhaps a thunderstorm).

F13100 - The maximum possible duration (hours) of one repetition of subfunction 13.1.

P13201 - The probability that no communication channel change is required. A channel change may occur at the time of handoff.

F17300 - Time (hours) between repetitions of subfunction 17.3, Data Base Maintenance.

RISKT - Risk threshold. If the risk computed by the hazard evaluation is greater than RISKT, then that pair is considered to be a high probability pair and the potential conflict must be resolved. RISKT is a probability and is unit-free.

RISKL - Low risk threshold. This threshold, set much lower than RISKT, is used to eliminate the many very low risk pairs. RISKL is a probability and is unit-free.

фLTRP - Two dimensional variable. One level threshold for manual ( $\varnothing$ CTRP(1)) and automatic ( $\emptyset L T R P(2)$ ). If controller is busy more than $\emptyset L T R P$ of the time, he is too busy. There are percent thresholds and are unit-free.

STøLT - Short term overload threshold for a man. That is, a controller whb is busy $100 \%$ of the time should not continuously work longer than STØLT (hours).

MIPSAP - Model movement in MIPS. Specifically, this is the number of MIPS the model will increment the machine (computer) in order to add resources to the given task.

ISEED - Seed for random number generators. Any large odd integer will suffice as an input value.

SIDE - Lentth of the side of a grid square used for conflict detection (CØNDET) in n.mi.

DSEPSQ - Minimum separation distance ( $\mathrm{n} . \mathrm{mi}$ ) squared. That is, this is the ATM system safety criteria of miss distance.

DTERR - Maximum error in estimated (i.e., predicted) time of conflict occurrence. This number is multiplied by a number drawn from a ( $-1,1$ ) uniform distribution ( $U(-1,1)$ ). DTERR is in hours.

WARNTM - Warning time for conflict detection. Specifically, this is the time the controller requires, before a predicted conflict, to begin and complete a precise hazard evaluation and notify the pilot to perform a resolution maneuver, if necessary, in hours.

ITYPER - Type of navigation error.
If ITYPER = 1 , the error is constant (uniformly distributed) between two fixed points.

If $\operatorname{ITYPER}=2$, the error increases (beginning at 0 ) from one fixed point to the next.

If ITYPER $=3$, the error increases to the midpoint of the segment joining the two fixed points, and then decreases to zero.

ALPHA - Autocorrelation coefficient for the navigation error. That is, this is a smoothing constant, necessary to prevent the error from oscillating erratically, over a time span. ( $0 \leq$ ALPHA $\leq 1$ ).

SHAPE - This constant defines the shape of the navigation error (i.e., it is the coefficient of negative exponential distribution, defining the navigation error).

SMAXX - Maximum allowable navigation error is the $X$ coordinate of the aircraft position (n.mi).

SMAXY - Maximum allowable navigation error is the $Y$ coordinate of the aircraft position (n.mi).

SMAXZ - Maximum allowable navigation error in altitude (coordinate) of the aircraft.

D1, D2 - The trapezoidal distribution used for speed bias is uniform in the internal $[-D 1, D 1]$ and, triangular in the intervals, $[-D 2,-D 1]$ and [D1, D2].


SDNUM - The number of standard deviations used for the conflict detection error.

TIMMS - Time between calls to the metering and sequencing algorithm, in hours.
XIANDT - Time before metering and sequencing assumes control over the aircraft (i.e., this is the time, before aircraft arrival at the feeder fix, to update the aircrafts' phase of flight to arrival transition), in hours.

FØRCST - Model look ahead increment. All aircraft will be examined F $\emptyset$ RCST into the future, in hours.

| Card No. | Name | Column | Format | Value/Description |
| :---: | :---: | :---: | :---: | :---: |
| 1 | NTASKS | 3-5 | I5 | Number of tasks |
|  | MTASK | 23-25 | ¢20 | Mask word used in FUNCTIØN. IDESCN (Should contain $\emptyset 777$ right justified). |
| 2 | KTASK (I) | 11-15 | I4 | I=1, NTASKS LCC (logic control chain) number |
|  | $\mathrm{KP} \emptyset \emptyset \mathrm{L}(\mathrm{I})$ | 16-19 | I4 | I=1, NTASKS Number of the resource pool that performs task |
| NTASKS <br> Times | KPRIめ (I) | 20-23 | I4 | $\mathrm{I}=1, \mathrm{NTASKS}$ Priority |
|  | KTIME (I) | 24-31 | 18 | ```I=1, NTASKS If KTIME(I) -- <O, Number of }100\mathrm{ instruc- tions for automated task =0, task is bypassed >0, pointer to vector in TMAN``` |
| 3 | NTMAN | 4-5 | I5 | Number of task times |
| NTMAN <br> Times | TMAN ( $\mathrm{I}, \mathrm{J}$ ) | 32-41 | F10.7 | $\mathrm{I}=1,3 ; \mathrm{J}=1$, NTMAN distribu- |
|  |  | 42-51 | F10.7 | tion of performance time |
|  |  | 52-61 | F10. 7 | required for manual resource to perform task J |
| 5 | NRSPNC | 5 | I5 | Number of pilot responses |
|  | MRSPNC | 23-25 | $\emptyset 20$ | Mass word used in FUNCTI $\emptyset \mathrm{N}$ IDESCN |
| $\begin{aligned} & \text { NRSPNC } \\ & \text { Times } \end{aligned}$ | KRSPNC (I) | 7-10 | I4 | $\mathrm{I}=1$, NRSPNC Task number |
|  | KRSPNT (I) | 11-14 | I4 | I=1, NRSPNC Pointer to time |
| 7 | NRSPNT | 5 | I5 | Number of response times |
| $\begin{aligned} & \text { NRSPNT } 8 \\ & \text { Times } \end{aligned}$ | $\operatorname{RSPNCT}(\mathrm{I}, \mathrm{J})$ | 15-24 | F10.7 | $\mathrm{I}=1,3$; $\mathrm{J}=1$, NRSPNT Response |
|  |  | 25-34 | F10. 7 | time for pilot resource to |
|  |  | 35-44 | F10.7 | perform task J |




Page 3.3-14

### 3.3.5 INITIA - Alrcraft Type



```
INITIA - Aircraft Type (Cond't)
```


## Card No. Name

| Cond 't of | ACR $\phi$ T (KTYPE) |  |
| :---: | :---: | :---: |
|  |  |  |
|  | THETH (KTYPE) |  |
|  |  | DTRTM (KTYPE) |

## Column

31-40 Fl0.0 Runway occupancy time; units - hrs.

Turn rate in hold pattern

Departure transition time interval; units hrs.

| 3.3.6 Exogenous Event Formats |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| T03000 - Prepare Flight Plan |  |  |  |  |
| Card No. | Name | Column | Format | Value/Description |
| 1 | LCCNO | 3 | 13 | 16 |
|  | TIME | 4-14 | F11.6 | Time of filing for flight plan (hr) |
| 2 | ACID | 1-4 | A4 | Aircraft identification, unique identifier |
|  | ICLASS | 5-7 | 13 | User class (avionics), not examined |
|  | ITYPE | 9-12 | A4 | Aircraft type, matching an existing aircraft type file MEMID. |
|  | IPRTY | 13-16 | I4 | Priority of flight plan, not examined. |
|  | IPHASE | 17-19 | I3 | Current phase of flight, between 1 and 8 , see section 2.0 . |
|  | ENDUR | 20-30 | F11.4 | Endurance (hr) |
|  | I $\emptyset$ RGAP | 32-35 | A4 | Origination airport or current jurisdiction (if airborne) |
|  | ACETD | 36-46 | F11.4 | Estimated time of departure |
|  | ICTL | 47-48 | I2 | Controlled alrcraft - $0=$ no, $1=y e s$ |
|  | INTND | 49-50 | I2 | Intentions known - )=no, l=yes |
|  | IDEST | 52-55 | A4 | Destination |
|  | IALTD | 57-60 | A4 | Alternate destination |
|  | IFR | 61-62 | I2 | IFR aircraft - $0=$ no, $1=y e s$ |
|  | IVFR | 63-64 | I2 | VFR aircraft - 0=no, leyes |
|  | NFIX | 65-66 | I2 | Number of points in time/position queue |
| 3 | X | 1-10 | F10.4 | Initial x -coordinate (nmi) |
|  | Y | 11-20 | F10.4 | Initial y-coordinate (nmi) |
|  | z | 21-30 | F10.4 | Initial z-coordinate (feet) |


| Card No. | Name | Column | Format | Value/Description |
| :---: | :---: | :---: | :---: | :---: |
| $\stackrel{3}{\text { Cont'd }}$ | XVEL | 31-40 | F10. 4 | Initial x -component of speed (kt) |
|  | YVEL | 41-50 | F10.4 | Initial y -component of speed (kt) |
|  | ZVEL | 51-60 | F10.4 | Initial z-component of speed ( $\mathrm{ft} / \mathrm{sec}$ ) |
|  | IENTER | 61-62 | I2 | Intentions known and entering ATM system for first time - $0=n 0,1=y e s$ |
| - | IDPRW | 63-64 | 12 | Departure runway number |
| $\begin{gathered} 4 \\ (\text { NFIX }+3) \end{gathered}$ | XINTND | 1-11 | F11.4 | X-coordinate of intended position (nmi) |
|  | YINTND | 12-22 | F11. 4 | Y-coordinate of intended position (nmi) |
|  | ZINTND | 23-33 | F11.4 | Z-coordinate of intended position (ft) |
|  | SPDLEG | 34-44 | F11.4 | Average speed during this leg (kt) [for landing aircraft, last speed $=-(f e e d e r$ fix*100 + runway number) ] |


| T01101 - Accept Data Link Request |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
| Card No. | Name | Column | Format | Value/Description |
| 1 | LCCNO | 3 | I3 | 3 |
|  | TIME | $4-14$ | F11.6 | Time of request. |
| 2 | AC | $1-4$ | A4 | Aircraft id - e.g., U234 |

T01102 - Accept Telephone Request

| Card No. | Name | Column | Format |  | Value/Description |
| :---: | :---: | :---: | :---: | :--- | :--- |
|  | LCCNO | 3 | I3 | 4 |  |
|  | TIME | $4-14$ | F11.6 | Time of request |  |
| 2 | AC | $1-4$ | A4 | Aircraft id - e.g., U234 |  |

## T06400 - Capability Change/Status Change/Emergency

| Card No. | Name | Column | Format |  | Value/Description |
| :---: | :---: | :---: | :---: | :---: | :--- |
|  | LCCNO | 3 | I3 | 58 |  |
|  | TIME | $4-14$ | F11.6 |  |  |
| 2 | ACNAME | $1-4$ | A4 | Aircraft id - e.g., U234 |  |


| Card No. | Name | Colum | Format | Value/Description |
| :---: | :---: | :---: | :---: | :---: |
|  | ISTAT | 5-6 | I2 | $1=$ status change; $0=$ none |
|  | ICAP | 7-8 | I2 | 1 = capability change; $0=$ none |
|  | IEMER (1) | 9-10 | I2 | 1 = emergency; $0=$ none |
|  | IEMER(2) | 11-12 | I2 | 1 = previously recognized; $0=$ none |
|  | IEMER (3) | 13-14 | I2 | $1=$ description adequate; $0=$ not |
|  | IEMER (4) | 15-16 | I2 | $1=$ ground support required; $0=$ not |
|  | IEMER (5) | 17-18 | I2 | $1=$ other aircraft required; $0=$ not |
|  | IEMER (6) | 19-20 | I2 | ```l = technical instructions required; 0 = not``` |
|  | IEMER ( 7 ) | 21-22 | I2 | $1=$ comm link required; $0=$ not |
|  | IEMER (8) | 23-24 | I2 | $1=$ guidance required; $0=$ not |
|  | IEMER (9) | 25-26 | I2 | $1=$ other aircraft available; $0=$ not |
|  | ETIME | 27-46 | F11.4 | Duration of emergency ( hr ) |

T15102 - Acquire and Analyze Data on Progress of Service

Card No. Name Column Format Value/Description

1

2

| Name | min | Format | 隹/Description |
| :---: | :---: | :---: | :---: |
| LCCNO | 3 | I3 | 161 |
| TIME | 4-14 | F11:6 | Time of event |
| ACNAME | 1-4 | A4 | Aircraft id - e.g., U234 |
| IRQST | 5-6 | I2 | $0=$ initial request, $1=$ update |
| ISAFE | 7-8 | I2 | ```1 = cease service due to safety; 0 = continue``` |
| IQUIT | 9-10 | I2 | ```l = service no longer needed; 0 = continue``` |
| ISPEC(1) | 11-12 | I2 | $1=$ need new flight plan priority |


| Card No. | Name | Column | Format | Value/Description |
| :---: | :---: | :---: | :---: | :---: |
| 2 | ISPEC (2) | 13-14 | I2 | 1 = need for guidance |
| Cont'd |  |  |  |  |
|  | ISPEC(3) | 15-16 | I2 | 1 = need for advisories |

### 3.3.7 DATAFIL - Date and Title Card

| Card No. | Name | Column | Format | Description |
| :---: | :--- | :---: | :---: | :---: |
| 1 | Title | $2-65$ | $16 A 4$ | Date and title of run. |

$-$

### 4.0 CARD DECK PREPARATION

### 4.1 DATA PREPARATION

The data described in the previous section can be prepared by punching paper tape off-line and loading onto a disk file through ine use of the RTAPE command or by loading directly from the on-line terminal through the use of the TRW/EDITOR. All data is loaded according to standard FORTRAN rules. The program reads data in two forms: formatted input and namelist input.

The formatted input is described explicitly in Section 3.3. Data should be entered in the indicated columns. If a data item has an "I" or integer format, then it must be input as a right-justified integer value with no decimal. Data items with an "F" or fractional format are input anywhere within the specified columns as long as a decimal is specified. A blank entry within a specified field will be read as a zero.

The namelist variables are described in Section 3.3.2. The namelist is initiated by a \$INP card. All data read by namelist must be between columns 2-80. Data is input by specifying the variable name, an equal sign, the value, and a comma as a delimiter. For an array the array name and equal sign are specified, then the list of values for the array beginning with the first element and proceeding to the last. The variable name may be specified in any order. If a variable should be specified more than once, then the last occurrence of the variable is used. The namelist data is terminated by a $\$$ END card. For example,

Column
2
\$INP
M04210=2077
$P 03000=.90, .96, P 04201=.98,1.0$,
-
ISEED=12345,
-
\$END

Page A. 2-1

### 4.2 JOB STREAM SETUP

Table 4.2-1 shows a control card setup for executing the DELTA simulation and the Post Processor on the TRW CDC6X00/CYBER74 computers. The first seven cards are Administrate and general control cards. The user should provide his own user ID and password on the account card.

The directives begin with the GET command. This command brings a copy of the permanent files into the working storage area. The SET card presets core to an indefinite value as a debug aid in finding variables which have not been properly set before use. The LINK card causes the loader to read directives and load binary files. The $X$ parameter causes execution of the loaded programs; the LO parameter specifies the desired load map options. The output file TAPE14 is sorted using the SORTC utility. The LOAD and EXECUTE cards are a simpler version of the LINK card and are used to run the DELTA Post Processor. The EXIT card defines where processings is to resume following an abnormal termination in one of the programs.

The user is referred to the TRW/TSS System Reference Manual for a more detailed discussion of each of the directives. In the example in Table 4.2-1, the input files contain the following information:

OV - overlay directives,
RJSMNB - binary deck of the MAIN program,
BN - binary deck of any modified routines; used to override BBEST,
BBEST - binary decks of DELTA simulation
NSALSIM- library of SALSIM binary decks
TAPE5 - scenario input data
TAPE30 - terminal input data; random access file produced by Terminal Generation Program,
BPOST - binary deck of Post Processor.
For a more detailed description of the rules and options available with various formats, the user is referred to the Fortran Reference Manual, CDC No. 60174900. A sample of the input data is shown with the test case in Section 6.0.

## TABLE 4.2-1 JOB STREAM SETUP FOR DELTA

 SIMULATION AND POST PROCESSOR```
ACCOINNT, LG 54P% 1, PASSWORD.
NAME, 57230n, 54271, GREEN,L.
PROSL EM,9996E7.
PTOGRAM,ATMSGOA.
PRIORITY,N.
MAXTIM,30O.
BANNER,OUTPIT, W1,1653.
GET, BEEST,OU=OUNEN,NSALSIM, BN=BNENLIB,RUS.4NB= BBATCY,ACCOUNT=LG5AONI.
GET,TAPE5=SFO57A, ACCOLNT=LG542O1.
GET,TAPE30=SFOTRMF,ACCOUNT=LG54291.
SET,INDEF, ADDR.
```



```
TIME.
REPLACF,MAD 57A.
REPLACE,TAPEK=T5SIA.
COPYGF,TAPES,OUTPUT.
REPLACE,TAPE14=T1460A.
GET,TADE7=T14604.
SORTC,TAPE7,K=17,25,L=4,4.
GET, TAP ES= T14504.
SORTC,TAPER,K=21,17,L=4,4.
GET, BOOST,ACCO!JNT=LG542O1.
SET,INDEF,ADDR.
LOAD,BPOST.
EXECUTE,PO.STPRC,OUTPUT=POST6OA.
REPLACE,POST5NA.
PENIND,POST6OA.
COPYBF,POST 6MA, OUTPUT.
COPYDF,DAY6OA.
TIME.
REPLACE,DAY60A.
EXIT.
CLEARSW,SY.
DMP,113500.
RENIND,MAP604.
COPYYF,MAP 5TA,OUTPUT.
REWIND,TAPE5:TAPE14.
REPLACE,TAPES=T56\A.
REPLACE,TADEI A=T145OA.
COPYRF,TAPES,OUTPUT.
COPYDF,DAY6OA.
REPLACE, DAY60A.
```


### 5.0 OUTPUT REPORT SPECIFICATIONS

### 5.1 INTRODUCTION

The DELTA simulation generates two reports for the user: the DELTA Run Summary and the DELTA Post Processor Report. The Run Summary gives a detailed description of the resource utilization of each element in each resource pool by jurisdiction, the state of any aircraft remaining in the system, and the utilization of dynamic memory for this run. The Post Processor Report counts the occurrences of each task which was performed within a jurisdiction and within the total model and presents a summary of the tasks performed for each aircraft and a list of the phases of flight through which each aircraft passed.

### 5.2 DELTA RUN SUMMARY

This section contains examples of the DELTA Run Summary which is produced by the routine DATAFIL in the DELTA simulation. The examples are presented in five figures which are computer printouts of an actual run. The printouts are annotated with circled numbers which are described below. Figures 5.2-2 to 5.2-4 show the different formats for a jurisdiction summary. Figure 5.2-2 illustrates the format for a terminal jurisdiction. The different formats which can occur for an en route jurisdiction are shown in Figures 5.2-3 to 5.2-4. Figure 5.2-3 shows the extra print resulting from an aircraft remaining in the jurisdiction at the end of the simulation run.

The parameters on the Summary Report are described below. The number preceding the description corresponds to the circled number on the figure.

1. Report title.
2. Run title (from TAPE5).
3. Max time for this simulation run (hours).
4. "High water mark" of dynamic memory actually used in this run.
5. Max value of dynamic memory allocated for this run.
6. Jurisdiction name. Terminal is added when a jurisdiction is a terminal.
7. Number of aircraft remaining in the en route jurisdiction.
8. Input capacity for the en route jurisdiction.
9. Number of aircraft remaining in the terminal jurisdiction.
10. Number of aircraft awaiting to be sequenced for the terminal.
11. Number of aircraft being sequenced by the terminal.
12. Description of aircraft remaining in the jurisdiction. The description consists of a sequential count, the aircraft id, the aircraft type, its phase of flight, the game time at which its input endurance will be
expended, the last game time when this aircraft was updated by MOVAC, and the ACBITS states vector for this aircraft.
13. The type of resource pool--manual in this case.
14. The resource pool number.
15. The current number of resource elements available at the end of the run.
16. The maximum number of resource elements available during the run.
17. The number of tasks in the resource pool queue awaiting to be processed at the end of the run.
18. The dynamic memory pointer for the resource element.
19. Game time at which the resource element was created-i.e., time first available (hr).
20. Time next available = time first available + cumulative busy time/overload threshold (hr).
21. Cumulative busy time is the sum of all the element's busy time (hr).
22. Percentage busy time $=$ cumulative busy time ( (max time time first available) (hr).
23. The type of resource pool--automated in this case.
24. The current automated computing rate in use at the end of the run (hundreds of instructions/sec).
25. The maximum automated computing rate available during the run (hundreds of instructions/sec).
26. End of report heading.

FIGURE 5.2-7. DELTA RUN SUMMARY, FIRST PAGE


FIGURE 5．2－2．DELTA RUN SUMMARY，EXAMPLE 1
（10）

## （9）

TトRMI：｜AL JU？ISJIGTION：JFO


AIRCRAFT OATA
TYPE P ETDURANCE UPDATE TIME
$\begin{array}{ll}\text {（16）} & \\ 6 \text { MEN } & \text { 21 TASKS LEFT } \\ \text { CUMULATIVE } & \text { PERGENTAGE } \\ \text { BUSY TIME（21BUSY TIME } \\ 1.57003642 & 78.501821 \\ 1.58057691 & 79.033841 \\ 1.53309056 & 79.154528 \\ 1.53217032 & 79.103541 \\ 1.57965320 & 78.983160 \\ 1.58818225 & 79.409113\end{array}$
$\begin{array}{ll}3 \text { MFN } & 0 \text { TASKS LEFT } \\ \text { CUMULATIVE PERCENTAGE } \\ \text { BUSY TIME BUSY TIME }\end{array}$

$$
\begin{aligned}
& \text { 1OTJ HI/S } \\
& \text { GUMULATIVE } \\
& \text { BUSY TIME }
\end{aligned}
$$

$$
\begin{aligned}
& \text { I MEN } \\
& \text { SUMSLTIVE } \\
& \text { BJSY TIME } \\
& \text { B. OOOOOOO }
\end{aligned}
$$

9.414044
11.126119
11.126119
52.541690

1コきา SXEVI 0
PERCENTAGF
BUSY TIME
45.700511 PERCENTAGE
BUSY TIME．
0.009000


> (15)
$\pm$ Y SNISN（ti）

## RESOURGE JATA

##  <br> 

（9）
등 STÁte NO A／C TYPE P EHDURANCE UPDATE TIME STATE VECTOR
（7）
 Cゅ9800 $25^{\circ} 1$ 6
10
10
0
0
$n$
1
-1
0
0
0
0
0
0
0
0 2EOCLC8G• $00000000^{\circ} 0$


$$
\begin{array}{cc}
\text { PIOL } 2 \text { USINE } & 3 \text { OF } \\
\text { AVAILABILITY IIMES } \\
\text { FIRST } & \text { NEXT }
\end{array}
$$


 RFSJURCE

## 1Nご， 373





22

（ㅈ）$\frac{8}{3}$
MAN

$$
\begin{array}{r}
07393716 \\
.01134721 \\
\hline 05083780
\end{array}
$$

$$
1.05033380
$$

－TASKS LFFT

FIGURE 5.2-2. DELTA RUN SUMMARY, EXAMPLE 1 (contd.)

(6)


Page 5.2-6

FIGURE 5.2-3. DELTA RUN SUMMARY, EXAMPLE $2:$

FIGURE 5.2-3. DELTA RUN SUMMARY, EXAMPLE 2 (contd.)


FIGURE 5．2－4．DELTA RUN SUMMARY，EXAMPLE 3
（6）


No


Ex

$$
{ }^{\text {Mogang }}
$$

$$
{ }_{2}^{4} \text { M }
$$

pesource data



$\square$
612899
997768
2277
37756
72667
空

(16)

$$
@_{\substack{z}}^{z}
$$

$$
\begin{aligned}
& \text { HAN RFSOURCE POOL } 2 \text { USING } 1 \text { AVAILABILITY TIMES }
\end{aligned}
$$

$$
\begin{aligned}
& 3 \text { JラY TIME } \\
& .47335110
\end{aligned}
$$ o TASKS LEFT

$$
\begin{aligned}
& \text { AVAILABILITY TIMES } \\
& \text { ELEHENT FIRST } \\
& \text { NEXT }
\end{aligned}
$$

$$
0.00000001 .06752538
$$

$$
\begin{aligned}
& 3 U S Y \text { TIME } \\
& 1.05752538
\end{aligned}
$$

$$
\begin{aligned}
& 25 \\
& 109 \text { HI/S }
\end{aligned}
$$

$$
\begin{array}{r}
\text { cumJLatIVE } \\
\text { BUSY TIME } \\
.9 .155556
\end{array}
$$BUSY TIME

53.376269

$$
\begin{aligned}
& \text { BUSY TIME } \\
& 45.227770
\end{aligned}
$$LEFTPERCENTAGE

BUSY TIME
45.22777.

$$
\begin{aligned}
& \text { cUMULATIVE } \\
& \text { GUSY TIME }
\end{aligned}
$$PERCENTAGE

$$
30 \text { 皆 }
$$

ELEMENT
530
ExT
455
AVAILABCILITY TIMES
IRST

（7）${ }^{\circ}$
700 d
ELEMENT
564


LrFt
S×SE1
man resjurce pool 4 USING 1 gF

NEXT
00090
09000

ELEMENT
596 EİST .00000000
$\qquad$

$$
\begin{array}{cccc}
\text { MAN RESOURCE POOL } 5 \text { USING } & \text { AVAILABILITY TIMES } \\
\text { ELEMENT } & \text { FIRST } & \text { VEXT } \\
\text { G12 } & 0.00030000 & .4732513
\end{array}
$$

$$
\begin{gathered}
1 \text { MEN } \\
\text { CUMULATIVE } \\
\text { BUSY TMME }
\end{gathered}
$$

$$
\begin{aligned}
& \text { 3USY TIME } \\
& 0.00000 \mathrm{COC}
\end{aligned}
$$

$$
0.00000000
$$

$$
\begin{gathered}
\overline{5} \text { MEN } \\
\text { CJMJLATVE }
\end{gathered}
$$

$$
\begin{gathered}
\text { OTASKS } \\
\text { PEPCENTAGF } \\
\text { BUSY TIME } \\
0.000000
\end{gathered}
$$

O TASKS LEFT


FIGURE 5.2-5. DELTA RUN SUMMARY, LAST PAGE

### 5.3 DELTA POST PROCESSOR REPORT

This section contains examples of the DELTA Post Processor Report which is produced by executing the DELTA Post Processor following a DELTA Simulation run. The examples are presented in three figures which are computer printouts of an actual run. The printouts are annotated with circled numbers which are described below. Figure 5.3-1 shows a page from the Task Summary by jurisdiction. It contains a count of each task occurrence by jurisdiction and by total. Figure 5.3-2 shows the first page of the Aircraft Summary. It shows the count for all tasks performed for this aircraft, the program states, and changes in the phase of flight.

The parameters on the Report are described below. The number preceding the description corresponds to the circled number on the figures.

1. Task number.
2. Jurisdiction id.
3. Number of occurrences of this task for this jurisdiction.
4. Task number.
5. Number of occurrences of this task during the run.
6. Aircraft id.
7. Task number.
8. Number of occurrences of this task for this aircraft.
9. Aircraft id.
10. Entry of this aircraft into the simulation.
11. Game time for the specified event (hr).
12. Jurisdiction id in which this event occurred.
13. Boundary crossing event.
14. Cancelled in an en route jurisdiction implies that the aircraft flew out of the jurisdictions being modelled for this run.
15. Indicates a change in the phase of flight.
16. Name of the new phase of flight.
17. Cancelled at a terminal while in landing phase implies the aircraft has landed and was removed from the system.
18. Indicates where the aircraft was at the end of the simulation run.

FIGURE 5.3-1. POST PROCESSOR TASK SUMMARY BY JURISDICTION

FIGURE 5.3-2. POST PROCESSOR AIRCRAFT SUMMARY, EXAMPLE 1


FIGURE 5.3-3. POST PROCESSOR AIRCRAFT SUMMARY, EXAMPLE 2


### 6.0 TEST CASE


#### Abstract

6.1 INTRODUCTION

The example shown in this section is the model verification case run for the San Francisco terminal using the "raw data" flight plans provided by Stanford Research Institute; Menlo Park, CA. This case is referred to as SFORAW. The section is divided into four sub-sections: a description of the namelist inputs defined by TRW, a list of the complete TAPE5 file, the DELTA Summary Report, and the DELTA Post Processor. Report.


### 6.2 NAMELIST INPUTS FOR SFORAW

This section defines the namelist input used in the TAPE5 input file for the SFORAW case. The list includes a short definition of the variable and the input values. An example of how these variables appear in the input file is shown in Section 6:3.

| LOCAL NAME | SHORT DEFINITION | INPUT VALUES | COMMENTS |
| :---: | :---: | :---: | :---: |
| F02000 | Time between repetitions of Function 2 | 0. | Hours |
| P03000 | Probability that preliminary flight plan needs no modification | $\begin{aligned} & .90 \\ & .96 \end{aligned}$ | First pass Subsequent passes |
| P04201 | Probability of no flight plan discrepancy due to aircraft capability or status | $\begin{aligned} & .98 \\ & 1.0 \end{aligned}$ | First pass Subsequent passes |
| P04202 | Probability of no flight plan discrepancy due to operational or environmental conditions | $\begin{aligned} & .95 \\ & .98 \end{aligned}$ | First pass Subsequent passes |
| P04203 | Probability of no flight plan discrepancy due to probed conflict detection | $\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$ | First pass Subsequent passes |
| P04205 | Probability of no flight plan discrepancy due to rules and procedures | $1.95$ | First pass Subsequent passes |
| P04206 | Probability of no flight plan discrepancy due to flight progress | $1.95$ | First pass Subsequent passes |
| P04207 | Probability of no flight plan discrepancy due to user class/ pilot qualifications | $\begin{aligned} & .98 \\ & 1.0 \end{aligned}$ | First pass Subsequent passes |
| P04401 | Probability of pilot rejection of modified flight plan | . 02 | , |
| P04402 | Probability of pilot resubmitting flight plan after rejection | . 98 |  |
| P05101 | Probability that aircraft Id code is required | 0. | Up to 8 categories may be assigned. Not needed in todays' systems |
| C05102 | Maximum permissible duration of one repentition of Task 5.1.2 | . 013722 | Hours |
| F05102 | Time between repetitions of Task 5.1. 2 | . 333333 | Hours |


| LOCAL NAME | SHORT DEFINITION | INPUT <br> VALUES | COMMENTS |
| :---: | :---: | :---: | :---: |
| P05103 | Probability of retry in approach | 1.0 |  |
| C05302 | Maximum acceptable time for pilot response to clearance | . 003332 | Hours |
| F06100 | Time between repetition of Subfunction 6.1 | . 008333 | Hours |
| CO6TAU | Maximum possible duration for the processing period of the aggregated tasks 6.1, $6.2 .2,6.3 .1$, and 6.3.2 (automated portion) | . 008300 | Hours |
| C061MN | Maximum possible duration for the processing period of 6.1, 6.2.2, 6.3.1, 6.3.2 (manual portion) | . 014639 | Hours |
| F07103 | Time between repetitions of Task 7.1.3 | 0. | Hours. Not performed in today's system |
| C07103 | Maximum permissible duration of one repetition of Task 7.1 .3 | . 283333 | Hours |
| P07104 | Probability of no long range conflicts due to flight plans for given aircraft | 1.0 |  |
| P07201 | Probability of no current out-of-tolerance expansion of tolerances | . 98 |  |
| F07201 | Time between repetitions of Task 7.2.1 | . 041667 | Hours |
| F07301 | Time between repetitions of Task 7.3.1 | . 166667 | Hours |
| P07302 | Probability of no short-range deviation for aircraft | . 90 |  |
| E07401 | Maximum time expanded tolerances can be enforced | . 083333 | Hours |


| LOCAL NAME | SHORT DEFINITION | INPUT VALUES | COMMENTS |
| :---: | :---: | :---: | :---: |
| F08101 | Time between repetitions of Task 8.1.1 | 0. | Hours |
| F08102 | Time between repetitions of Task 8.1.2 | . 008333 | Hours |
| F08103 | Time between repetitions of Task 8.1.3 | . 008333 | Hours |
| F08105 | Inverse of time for Task 8.1.3 (F08103) | 120. | Cycles/hours |
| H08107 | Conflict imminence threshold | . 000278 | Hours |
| F08108 | Frequency of careful monitoring Tasks 8.1.8 | . 008333 | Checks/cycle |
| P082PR | Probability that pilot will respond to conflict resolution message | . 99 |  |
| P082RV | Probability of performance change revision if no pilot response | . 99 |  |
| D08201 | Task time for 8.2.1 | . 000833 | Hours |
| D08202 | Task time for 8.2.2 | . 002764 | Hours |
| D08203 | Task time for 8.2.3 | . 000833 | Hours |
| D08204 | Task time for 8.2.4 | . 000928 | Hours |
| D08205 | Task time for 8.2.5 | . 003508 | Hours |
| F09100 | Time between repetitions of Subfunction 9.1 | . 5 | Hours |
| C09100 | Maximum permissable duration of one repetition of Subfunction 9.1 | . 013736 | Hours. Totally automated in current system |
| P09202 | Probability of no excess slack and demand is predicted arrival. departure schedules | / . 50 |  |
| P11000 | Probability that further vertoring is not required | . 50 |  |


| $\begin{aligned} & \text { LOCAL } \\ & \text { NAME } \\ & \hline \end{aligned}$ | SHORT DEFINITION | INPUT VALUES | COMMENTS |
| :---: | :---: | :---: | :---: |
| P11101 | Probability of no vectoring for <br> 1. Course <br> 2. Speed <br> 3. Altitude | $\begin{aligned} & .20 \\ & .40 \\ & .40 \end{aligned}$ | Three parts |
| C11502 | Maximum acceptable pilot response time to vectoring message | . 001110 | Hours |
| P11503 | Probability that no retransmission of vectoring message is required | . 95 |  |
| P12104 | Probability that information required by pilot is available | . 98 |  |
| M12202 | Maximum number of aircraft for selective distribution of advisories | 3. |  |
| C12207 | Maximum permissible duration of one repetition of Task 12.2.7 | . 005667 | Hours |
| C12301 | Maximum permissible duration of repetition of Task 12.3.1 | . 004678 | Hours |
| P12304 | Probability that vectoring is desired | . 95 |  |
| C13100 | Maximum permissible duration of one repetition of Subfunction 13.1 | . 011333 | Hours |
| F13100 | Time between repetitions of Subfunction 13.1 | . 016667 | Hours |
| P13201 | Probability that no communication channel change is required | . 05 |  |
| F17300 | Time between repetitions of Subfunction 17.3 | . 432432 | Hours |


| $\begin{aligned} & \text { LOCAL } \\ & \text { NAME } \end{aligned}$ | SHORT DEFINITION | INPUT <br> VALUES | COMMENTS |
| :---: | :---: | :---: | :---: |
| AINC | Altitude climb distance for CONPLRT avoidance | 100. | Feet |
| ALPHA | Smoothing coefficient (auto correlation coefficient) | 6* . 5 | Six number array $0<A L P H A<1$ for each speed cTass |
| ANGTN | Turn increment | 30. | Degrees |
| $\begin{aligned} & \text { D1 } \\ & \text { D2 } \end{aligned}$ | Interval designation for trapezoidal speed bias | $\begin{aligned} & 10 . \\ & 25 . \end{aligned}$ | Speed class dependent, but same for all classes |
| DSEPSQ | Minimum separation distance squared | 9.0 | $(\mathrm{n} . \mathrm{mi})^{2}$ |
| DTERR | Error in time of conflict occurrence | . 016666 | Hours |
| FORCST | Model look ahead increment | . 083333 | Hours |
| ISEED | Seed for random number generators | 123456789 | Large odd integer |
| ITYPER | Error type - navigation | $\begin{array}{ll} 1 & \\ 1 & \\ 2 & 3 \\ 2 & 3 \end{array}$ | Values are 1, 2, or 3. <br> Speed class dependent |
| JPRNT | Print suppression variable | $\begin{aligned} & 8 * 1 \\ & 2 * 0 \\ & 60 * 1 \\ & 10 * 0 \end{aligned}$ | These are arrays |
| LEVS | Priority sequence of revolution maneuvers | $\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \end{aligned}$ |  |
| MIPSAD | Increment in MIPS | 1 | No receiving for today's system |
| NSTEP | Number of steps in paths ensemble | 5 | Odd number |
| NuMLEV | Number of resolution maneuvers | 6 |  |
| QLTRP | Overlook threshold for <br> 1. Manual ( $\varnothing$ LTRP(1)) <br> 2. Automatic ( $0 \operatorname{LTRP}(2))$ | $\begin{aligned} & 100 . \\ & 100 . \end{aligned}$ | Percent of this difference |


| LOCAL <br> NAME | SHORT DEFINITION | InPuT VALUES | COMMENTS |
| :---: | :---: | :---: | :---: |
| OUT IN | Sensor data | 1. |  |
| QUTSN | Sensor data | 1. |  |
| PLØTMX | Maximum time for pilot to respond to performance change message | . 000834 | Hours |
| RISKL | Low risk threshold | . 001 |  |
| RISKT | Risk threshold | . 15 |  |
| SKNum | Number of standard deviations used for conflict detection error | 3. |  |
| SHAPE | Navigation error shape constant | $\begin{aligned} & 3.5 \\ & 3.0 \\ & 2.5 \\ & 2.0 \\ & 1.5 \\ & 1.0 \end{aligned}$ | Speed class dependent longer for lower speeds |
| SIDE | Grid square side length | 60.0 | n.mi |
| SIGIN | Sensor data | $\begin{aligned} & 40 . \\ & 30 . \\ & 20 . \\ & 10 . \\ & 5 . \end{aligned}$ |  |
| SIGSN | Sensor data | $\begin{aligned} & 40 . \\ & 30 . \\ & 20 . \\ & 10 . \end{aligned}$ |  |
| $\begin{aligned} & \text { SMAXX } \\ & \text { SMAXY } \\ & \text { SMAXZ } \end{aligned}$ | Maximum allowable navigation error in the $X, Y$, and $Z$ deviation respectively | $\begin{aligned} & 6 * 10 . \\ & 6 * 10 . \\ & 6 * 1 . \end{aligned}$ | n.mi <br> Six number arrays |
| STDLT | Short term overload threshold | 8. | Controller should be busy no longer than STDLT 100\% of the time. Hours |
| TIME | Current time | 0. | Input starting time of model. Hours |
| TIMMS | Time between calls to metering and sequencing routine | 25. | Hours |


| $\begin{aligned} & \text { LOCAL } \\ & \text { NAME } \end{aligned}$ | SHORT DEFINITION | INPUT VALUES | COMMENTS |
| :---: | :---: | :---: | :---: |
| TLKAHD | Look ahead time for 7.1.1 used in 5.2.3 | . 5 | Hours <br> 7.1.1 not performed in today's system |
| TLDQK | Look ahead time | 300. |  |
| TRL@QK |  | 30. |  |
| TW | Warning time | 60. | Seconds |
| WARNTM | Warning time for conflict detection | . 116666 | Hours |
| XLANDT | Time before M\&S assuming control over aircraft | . 5 | Hours |

### 6.3 LIST OF TAPE5

This section shows a complete list of the card images contained in the TAPE5 input file used in the SFORAW case. The example shows the SALSIM specifications, the namelist inputs, the task times and allocations, the aircraft types, the jurisdictions, and the exogenous flight plans.



| *50022 | 2000100000000 | 0 IGNORE |
| :---: | :---: | :---: |
| S0023 | 20071 | 1+00.008153-00.002791+00.004069 |
| 50024 | 2000112 | 2400.006019-00.001944+00.003333 |
| 50025 | $20001 \ldots \ldots$ | $3+00.009667-00.003600+00.004722$ |
| S 0026 | 20001 | 4+00.001667-00.000556+00.000556 |
| 50027 | 200115 | 5+00.003194-00.000972+00.000972 |
| 50023 | 20001 . 16 | 6+00.003500-00.001361+00.003611 |
| S0029 | 2000117 | 17+00.001667-00.000555+00.000555 |
| - S0030 | 2000100000000 | 0 IGNORE |
| - 50031 | 2000100000000 | D. IGNORE |
| S0032 | 20001 - 18 | 8+00-004492-00.001528+00.002917 |
| S0033 | 2000119 | 9+00.019290-00.004896+00.015549 |
| S0034 | 20001 . 17 | 7.0.001667-00.000555+00.000555 |
| SOO35 | 2000120 | 20+00.006250-00.002083+00.002083 |
| 50036 | 2000121 | 21+00.050000-00.016667+00.016667 |
| - S0037 | 2000100000000 | Q IGNORE |
| - 50033 | 2000100000000 | 0 IGNORE |
| 50039 | 2000115 | 5 J.003194-00.000972+00.000972 |
| - S0040 | 2000100000000 | 0 IGNORE |
| ETOO42 | 1000522 | 22+00.000417-00.000139+00.000139 |
| ETOO43 | 1000523 | 3+00.007472-00.003128+00.006250 |
| T0042 | 10005 . . . 24 | 4+00.005431-00.000322+00.000558 |
| ET0045 | 1000522 | 2 0.000417-00.000139+00.000139 |
| ET0046 | 1000525 | 25+00.005175-00.001711+00.003611 |
| E10047 | 10005 26 | 6+00.004286-00.001494+00.002389 |
| ETOO48 | 1000527 | 27+00.009509-00.003044+00.002694 |
| ET0043 | 1000520 | 00.006250-00.002083+00.002083 |
| ETOO50 | 10005 28 | 8+00.004236-00.031403+00.001486 |
| ETOO51 | 10005 | 29+00.002342-00.000592+00.000572 |
| A0054 | $30010-5$ | 5 Auto |
| ET0055 | 1001030 | $30+30.000279-00.000139+00.000139$ |
| *ET0056 | 1000500000000 | 0 IGNORE |
| - ET0057 | 100100000000 | 0 IGNORE |
| - ETOO59 | 100100000000 | D IGNORE |
| T0060 | 10010 | $31+00.000717-00.000074+00.000089$ |
| T 0061 | 10010 - 32 | $32+00.002975-00.001056+00.000700$ |
| ET006? | 1031031 | 31 D.000717-00.000094+00.000089 |
| ETC063 | 1031033 | $33+00.001047-0$-000047+00.000003 |
| ETOO64 | 1001034 | $34+100.002278-00.0$ 00322+00.000514 |
| ET0065 | 10010 35 | $35+00.002508-03.000325+00.000428$ |
| - ET0066 | 1000100000000 | O IGNORE |
| -ET0067 | 100010000000 | O IGNORE |






[^0]














JURIS. ID, NO. OF FLOOR VERT.
KAY COORS. NO. ADJ JURISt.
ADJACENT JURISDICTION
NO. OF JURIS. ADJ. TO CEIL.
NO. OF URIS. ADJ. TO FLOOR

$\cdots+\cdots+\infty$
\[

$$
\begin{gathered}
0 N \\
1 \\
1 \\
1 \\
a
\end{gathered}
$$
\]






Page 6.3-15



Page 6.4-1
6.4 DELTA SUMMARY REPORT

This section contains the summary report generated by the DELTA simulation for the SFORAW case. It shows the utilization of dynamic memory and the utilization statistics for the resources in each jurisdiction.

Page 6.4-2
JURISOICTION: ER-N



MAN RESOURGE POOL 1 USING 3 OF 3 MEN 0 TASKS LEFT

RESOURGE POOL USING MEN DASKS LEFT

$$
\begin{aligned}
& 2 \angle 0^{\circ}+0^{\circ} \angle 9 \\
& 3 \mathrm{WII} \text { ASNE }
\end{aligned}
$$

MEN

$$
\begin{array}{cl}
\text { CUHULATIVE PERCENTAGE } \\
\text { BUSYTIME BUSY TIME }
\end{array}
$$

O TASKS LEFT

$$
\begin{aligned}
& \text { BUSY TIME } \\
& 13.564815
\end{aligned}
$$

$$
\begin{aligned}
& \text { OTASKS } \\
& \text { PERCENTAGE } \\
& \text { BUSY TIME } \\
& 13.56 G R 15
\end{aligned}
$$

0 tasks left PERCENTAGE
0.000000

0 tasks le PERCENTAGE
GUSY TIME
 5 MEN
SUMULATIVE


JURISJICIION: ER-S

AIRCRAFT DATA
NO A/C TYPE P ENDURANCE UPDATE
TYPE P ENDURANCE UPDATE IIME

STATE VECTOR

HAN RESOURCE POOL 2 USING 3 OF 3 MEN 0 TASKS LEFT
AIRCRAFT
RESOURCE DATA.




JURISDICTION: AR-5

## $\because$ ONTAINED 0 OF, 50 AIRCRAFT



NO A/C TYPE P ENDURANCE UPDATE TIME

## RESOURCE DATA



- .-
 -

MAN RESOURCE POOL 2 USING 3 OF 3 MEN OTASKS LEFT PERCENTAGE
BUSY TIME

BUSY
.984434
2.000514
934613
36.934613

HI/S CUMULATIVE PERCENTAGE
$\begin{array}{lr}\text { 8USY TIMIE } \\ .61736111 & 30.868056\end{array}$

> OF 1 MEN 0 TASKS LEFT CUMULATIVE PERCENTAGE

> BUSY TIME
0.000000

5 MEN
CUMULITVE PASKS
PERENTAGE
BUSY TIME
$\begin{array}{ll}\text { OUSY TIME } & \\ 22456189 & 24.951321\end{array}$


$$
.85355552
$$

$\begin{array}{ccc}\text { RESOURCE POOL } 5 \text { USING } & 3 \text { OF } \\ & \text { AVAILABILITY TIMES } \\ \text { ELEMENT } & \text { FIRST } & \text { NEXT } \\ 3148 \\ 3103 & 1.10000000 & 1.32456189 \\ 433 & 0.0000000 & 1.27349588 \\ & 0.000000 & .36355562\end{array}$

$$
10 \varepsilon
$$

$\qquad$

MAN RESOURCE POOL
HAN RESOURCE POOL 4 USING 1 OF


$00000000000000000^{\circ} \quad 22 \pi$

TERMINAL JURISDIGTION: SFO CONTAIVED 0 AIRCRAFT
0 AIRCRAFT WERE AHAITING SEQUENCING - D AIRCRAFT WERE GEING SEQUENCED NO A/C TYPE P ENDURANCE UPOATE TIME STATE VECTOR RESOURCE POOL 1 USING 3 OF 3 MEN 0 TASKS LEFT PERCENTAGE
 0ES191*99
66.923674
66.335444
0 TASKS LEET
PERCENTAGE


O'TASKS LEFT

$\begin{array}{cc}1 \text { MEN } & 0 \text { TASKS LEFT } \\ \text { CUMULATIVE PERCENTAGE }\end{array}$

5 MEN 0 TASKS LEFT


Page 6.4-8

### 6.5 DELTA POST PROCESSOR REPORT

This section shows the DELTA Post Processor Report which was generated for the SFORAW case. It contains a count of task occurrence by jurisdiction and by aircraft and a list of model events for each aircraft.

Page 6.5-2


IOTAL COUNT FOR TASK 3O IS ?.
TOFAL COUNT FOR TASK
$\begin{array}{rr}31 & A R-3 \\ 31 & A R-5 \\ \text { TOTAL COUNT FO }\end{array}$

| 32 | $A R-3$ |
| :---: | :---: |
| TOTAL COUNT FOR |  |

TOTAL COUNT FOR TASK 32 IS 2.
TOTAL COUNT FOR TASK 37 IS. 2.
$\begin{array}{llll}39 & A R-3 & & 1 \\ 39 & A R-5 \cdots & \cdots & 1\end{array}$
TOTAL COUNT FOR TASK 33 IS 2 .
$\begin{array}{lll}40 & A R-3 & 1 \\ 40 & A R-5 & 1\end{array}$
TOTAL COJNT FOR TASK 40 IS 2.


| 42 | $A R-3$ | 1 |  |
| :---: | :---: | :---: | :---: |
| 42 | $A R-5$ | 1 |  |
|  |  |  |  |
| 43 | $A R-3$ |  |  |
| 43 | $A R-5$ | 1 |  |
| 43 | $E R-N$ | 2 |  |
| 43 | $S F O$ | 1 |  |

43 IS
1 In
45 IS
TOTAL COJNT FOR TASK

$$
\begin{aligned}
& 45 A R^{\text {IOTAL COUNT FOR TASK }}
\end{aligned}
$$

$\left[\begin{array}{ccc}46 & A R-3 & A R-5 \\ 46 & 1 \\ \text { TOTAL COUNT FOR_IASK } & 46 \\ \hline\end{array}\right.$


| 48 | $A R-3$ | 13 |
| :---: | :---: | :---: |
| 48 | $A R-5$ | 16 |
| 48 | $E R-N$ | 3 |
| 48 | $E R-S$ | 1 |
| 48 | SFO | 16 |
|  |  |  |
| TOTAL COUNT FOR TASK |  |  |

1
$2 \cdot \ldots$


| 49 | $A R-3$ | 12 |
| ---: | :---: | ---: |
| 49 | $A R-5$ | 8 |
| 49 | $E R-N$ | 3 |
| 49 | SFO |  |

0.0 m

TOTAL COUNI FOR TASK
30.

Page 6.5-7



$\begin{array}{cc} \\ 120 & A R-5 \\ 120 & E R-N \\ 120 & E R-S \\ 120 & S F O \\ \text { TOTAL COUNT FOR }\end{array}$
121
121
121
121
12
12
121
121
-10






4
1
2
2
$\rightarrow 0$ $\sigma$
ㅇOON Mran！
 8912
009
$2 ヶ 90$
97
 응응 $\cdot$ーヶ たた岂 AT
FF
FF
PHA
PUA OF AIRCRAFT
N45
AIRCRAFT
N45
HANERES

 ननननクन
 MZ





$N$






| AIRCRAFT | N524 | ENTERES AT | . 9900000000 IN ER-S. |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AIPCRAFT | N524 | HANDED OFF AT |  | 1.2121657785 ro | AP-3. |  |
| A IRCRAFT | N524 | HANDED OFF AT |  | 1.3457032704 T0 | AR-5. |  |
| A IRCRAFT | N524 | HANOED OFF AT |  | 1.4795224474 TO | SFO |  |
| A IRCRAFI | N524 | CHANGED PHASE | AT | . 9900000000 | TO ARPIVAL | RANSITION. |
| AIRCRAFT | N524 | CHANGED PHASE | AT | 1.2442701919 | TO APDROACH |  |
| AIRCRAFT | N5 24 | CHANGEO PHASE | AT | 1.5397532539 | TO LANDING. |  |
| A IRCRAFI | N5?4 | CANCELLED AT |  | . 5580865872 IN | Fo |  |







NNNNNNNNNNNNNNN






NNNNNNNNNNNNN



+MNHTHMMMMMMM


### 7.0 ERROR AND WARNING MESSTAGES

### 7.1 INTRODUCTION

There are four types of messages which a user might receive using the DELTA simulation: operatinc system, Fortran, SALSIM and DELTA. The first two types are CDC standard messages which are not unique to DELTA. Operating system messages are displayed in the user dayfile and are usually self-explanatory - e.g., "TIME LIMIT" indicates that the user did not specify sufficent run time in the MAXTIM parameter card. Descriptions of these messages can be found in the CDC SCOPE Reference Manual.

Fortran diagnostics will usually occur from incorrect data setups. These messages will be displayed in the TAPE 6 output file and will usually list the offending input and give a brief description of the error. Descriptions of these messages can be found in the CDC FORTRAN Reference Manual, CDC \#60174900.

The remaining diagnostics are generated either by the SALSIM utility routines or by the DELTA routines. These are described in the following sections.

### 7.2 SALSIM DIAGNOSTIC

The SALSIM utilities perform a variety of data checks to ensure the proper execution of the software. If an error is detected, a message is printed and execution is terminated by calling the ABORTT routine. These messages are described below along with the routine which writes the message.

### 7.2.1 CREATE Diagnostics

**AVAILABLE MEMRY PTRS ALTERED
TIME $=$ REQUEST $=$
A check is made to see if $\operatorname{IV}(1)=3$. This value is usually altered by the use of a subscripted variable with a subscript which has not been set prior to use and is equal to zero.
**MEMORY REQUEST IS TOO LARGE. TIME $=$ REQUEST=
This message will occur if the requested length for a block of dynamic memory is zero or exceeds MDESX.
**MEMORY CAPACITY EXCEEDED AT TIME= REQUEST=
This is the most likely message to be received. It indicates that the dynamic memory provided for this run is too small. The user must expand the dimension of IV by recompiling the MAIN routine and set the MAXKXX value on the SALSIM specification card to the new dimension of IV.

### 7.2.2 DESTRO Diagnostics

**ILLEGAL DESTROY PARAMETER
LOC= LENGTH= TIME=
Either LOC and/or LENGTH are zero.

### 7.2.3 CAUSE Diagnostics

** NON ZERO SUCCESSOR IN CAUSE
The first word of an event notice to be processed by CAUSE should be zero.

### 7.2.4 FILE Diagnostics

**NON ZERO SUCCESSOR IN FILE
The member to be filed has a successor - i.e., the first word of its event notice is non-zero.

### 7.2.5 RSPEC Diagnostics

**RESPEC ARGUMENT IS NOT MEMBER OF SET
The pointer to the member to be removed is not part of the specified set.

### 7.3 DELTA DIAGNOSTICS MESSAGES

The DELTA model contains a large number of both diagnostics (messages preceeding calls to Subroutine AB@RTT) and warning messages. The more likely to occur are described below. The others are self descriptive and are not expected to occur unless the code is altered. All messages are written to TAPE 6.

### 7.3.1 ABQRTT Diagnostics

**AB@RTT CALLED AT time
TASK lcc number EVENT event notice pointer AND ERR@R error number STQP RUN.

Any time ABØRTT is called, this message is output. The SALSIM routines generate different error numbers, the DELTA diagnostics do not set this parameter.

IV (1:20)
If $A B \emptyset R T T$ is called for error type 3 (see first diagnostic for CREATE, 7.2.1), the first twenty words of the IV array are written out in octal format.

### 7.3.2 ACT4 Messages

IN ACT4 AIRCRAFT aircraft id IS CANCELED AT time.
When an aircraft reaches the end of its time/position queue (flight plan), this message is written. It is a warning message, useful in keeping track of the aircraft.

### 7.3.3 ALLQC Messages

IN ALLØC EVENT DESTRØYED
After an aircraft is canceled, the tasks being performed for it must be stopped. Those being pulled from queues or parts of chains are found by tests in ALLDC utility and this warning message generated each time one is found.

### 7.3.4 BNDRY Messages

$A / C$ aircraft id LEAVES SYSTEM AT $x, y, z$-coordinates THRU $\left\{\begin{array}{l}\text { side } \\ \text { floor } \\ \text { ceiling }\end{array}\right\} \quad \emptyset F \cdot f i s d i c t i o n ~ i d ~ T I M E ~ t i m e ~$
When an aircraft crosses out of the jurisdictions being modelied, this message is written. The aircraft will be canceled at the time shown. This is a warning message.

ERR@R IN BNDRY, EXIT PØINT NØT FØUND,
A/C aircraft id AT location and velocity IN jurisdiction id
This warning message is written when an aircraft is not in the jurisdiction indicated in its AIRCRAFT FILE. An attempt is made to find the correct jurisdiction. This warning may be used to detect aircraft which are input in the wrong jurisdiction either due to errors in $x, y$ or $z$ coordinates or jurisdiction id.

### 7.3.5 CRASH Messages

ERRØR IN CRASH. LØØK-AHEAD BEYØND NEXT FIXED PØINT.
NØW, BUT THERE ARE NØ M@RE FIXED PØINTS.
TIME = time $\quad I D=$ aircraft id
When a non-landing aircraft is approaching the final fixed point of its time/position queue (flight plán), this message is output. It is a warning message, providing status information.

### 7.3.6 ELIST Message

EL Icc number EX@G time
This message is output for each exogenous event.
**ERRØR IN ELIST**
TIME time
TASK lcc number, function, task number
TASK PØINTER pointer to event notice
This is an error message which results when an erroneous lcc is triggered. It is followed by a call to ABØRTT.

### 7.3.7 INITIA Messages

number of errors JURISDICTION BØUNDRY ERR@RS FØUND IN INITIA
If there are an inconsistancies found in the jurisdiction definitions this message is written and ABØRTT is called. While these tests are capable of finding many types of errors, they are not fool proof, so BNDRY and associated routines contain other tests of consistancy which are not described here. These INITIA tests are primarily to detect bad mnemonics.

### 7.3.8 METSEQ Messages

A/C aircraft id IN METSEQ HAS BAD FF $Q R$ RW ff number, rw number
If METSEQ detects a non-positive feeder fix number or a nonpositive runway number, this message is written and AB@RTT called. This diagnostic may be generated if a non-landing aircraft contains sufficient data to get past other tests. It may be corrected by modifying the input time/position queues final fix point or departure runway.

A/C aircraft id HAS FFIX ERR@R
This diagnostic is generated if either the feeder fix number is greater than the number of feeder fixes in TAPE 30 or no feeder fix is found at the same location as the final fix point in the time position queue. In the latter case, the entire set of feeder fixes has been searched and no match could be found. A distance tolerance of $10^{-6} \mathrm{nmi}$ is used. In either case, AB $\emptyset$ RTT is called after the message is written.

TERMINAL P@INTER ERRØR A/C aircraft id
This diagnostic is generated when the destination of a landing aircraft contains a non-positive value. The destination is set in T03000 from an input mnemonic. This error results in the calling of AB $\emptyset R T T$. The use of an incorrect destination mnemonic would be the cause of this error. The destination of an aircraft expected to land within the model constraints must have a mnemonic which identifies a terminal jurisdiction. Similarly, a departing aircraft with an invalid originating jurisdiction will cause this error.

## A/C aircraft id HAS RUNWAY ERRQR

This diagnostic is generated if an arrival or departure runway number greater than the terminal's number of runways. This error causes AB@RTT to be called.

### 7.3.9 MOVAC Messages

While M@VAC contains several diagnostic messages and error traps, they are self-explanatory in content and need not be listed here. Consult a subroutine listing for more information.
7.3.10 T03000 Messages

AIRCRAFT aircraft id CANN@T BE ADDED IN F3.0
This message denoted the failure of an Aircraft Data File being input to pass one of the following tests:
a) the number of fix points is less than two - hence the time/ position queue is incomplete; b) the aircraft id is redundent with another aircraft currently in the system; or c) either the originating jurisdiction, the aircraft type or the phase of flight is invalid. The message is only a warning, though other problems, especially I/O errors may terminate the run. The aircraft and its time/position queue are eliminated from the system.

### 8.0 TERMINAL GENERATION PROGRAM

### 8.1 INTRODUCTION

Program DSKWRT reads input cards and writes the off-line random access (mass storage) disk file used in the METSEQ subroutine of the DELTA model to read in sequence route information for the terminals. Subroutine ESCRT is called by DSKWRT to write escape route information for missed approaches onto the disk file.

The output of Program DSKWRT is written on the disk file, TAPE3O. DSKWRT first reads the number of terminals from the file SFØTERM on TAPE2, then reads the terminal mnemonic and the number of runways. Subroutine ESCRT is called to process escape route data, and the error switch is checked before further processing of DSKWRT. The sequence route records and feeder fix records are written after all feeder fix data has been read, and the number of records written on TAPE3O is used in writing the terminal record. At the completion of processing terminal information, the terminal mnemonic and pointer are displayed for the user before completion of execution. This pointer is input for the IDSKRW variable. See Page 3.3-12.

The escape route data on the file ESCAPE is read by Subroutine ESCRT on TAPE3. This routine writes the escape route records and the escape record which contains starting points of each escape route.

The following sections describe the input specification of TAPE2 and TAPE3 and give the values used in the SFO runs.

Figure 8.1-1 illustrates the run procedures and the generated outputs.

FIGURE 8.1-1. PROCEDURES FOR RUNNING TERMINAL GENERATION PROGRAM ON CDC 6X00/TSS
[GET,TAPE2 = SFØTERM,ACCØUNT = CA66028
[GET,TAPE3 = ESCAPE,ACCOUNT = EB54195
[RUNX,I = DSK,G
1 FIRST RECDRD WRITTEN = 1
TERMINAL SFØ P\emptysetINTER =
12
[REPLACE,TAPE3O = DSK3O

```
```

```
[GET,DSK,ACCØUNT = EB54195
```

```
```

[GET,DSK,ACCØUNT = EB54195

```

\section*{Notes}

File DSK contains Program DSKWRT and Subroutine ESCRT(IESW)

Tape 2 - input data to DSKWRT
Tape 3 - input data to ESCRT
Load and execute DSKWRT
\{Program output written by system
Places output on permanent storage under the file name DSK30

\subsection*{8.2 SEQUENCE ROUTE INPUT SPECIFICATION \\ 8.2.1 TAPE2 INPUTS}
\begin{tabular}{clllll} 
Card No. & Name & Column & Format & & Value/Description
\end{tabular}
8.2.2

The following pages in this section are a computer listing of the
TAPE2 inputs used in the SFO runs.




Page 8.2-5


corote



\subsection*{8.3 ESCAPE ROUTE INPUT SPECIFICATION}

\subsection*{8.3.1 TAPE3 Inputs}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Card No. & Name & & Column & Format & Value/Description \\
\hline 1 & \(N \emptyset E R\) & & 1-2 & I2 & Number of escape routes per sequence route \\
\hline \multirow[t]{2}{*}{2} & N¢ERPT & & 1-2 & I2 & Number of escape route points in SRXYZ \\
\hline & IEFFX & & 3-4 & I2 & Number of feeder fixes for escape routes \\
\hline 3 & ERVEL (J) & & 1-10 & F10.5 & \(J=1,25\) average velocity over escape route by speed class \\
\hline \multirow[t]{3}{*}{4} & NØEPTS & & 1-2 & I2 & Number of branch points over escape route \\
\hline & EDIST & & 3-12 & F10.5 & Distance fron feeder fix to escape point via sequence route; units nmi. \\
\hline & ELNTH & , & 13-22 & F10.5 & Not used \\
\hline \multirow[t]{3}{*}{5} & ERXYZ (J,K) & & 1-12 & F12.5 & \(\mathrm{J}=1,3 ; \mathrm{K}=1, \mathrm{~N} \emptyset \mathrm{EPTS}\) \\
\hline & & & 13-24 & F12.5 & \(\mathrm{X}, \mathrm{Y}, \mathrm{Z}\) coordinate of branch points; units (nmi, nmi, ft.) \\
\hline & & & 25-36 & F12.5 & \(X, Y, Z\) coordinate of branch points; units (nmi, nmi, ft.) \\
\hline
\end{tabular}
8.3 .2

The following pages in this section are a computer listing of the TAPE3 inputs used in the SFO runs. These inputs are dummies since there were no missed approaches for the set of runs made and are presented merely as an example of the format.



\subsection*{9.0 INTERARRIVAL TIMES GENERATION PROGRAM}

Program SDATA generates interarrival times an aircraft will enter a system at a point \(80-100 \mathrm{n} . \mathrm{mi}\). from the terminal, based on the considerations that 1) aircraft interarrival times at a route point 80-100 n.mi. from the terminal conform to the first order Erlang distribution with a mean equal to the desired flow rate along that route, 2) this flow rate will be defined as a percentage of the total flow rate at runway. For example, if the total flow rate is 60 aircraft per hour and \(20 \%\) of the flights approach along a given route, the flow rate used for defining the mean of the Erlang distribution along that route will be (.20) (60) = 12.

SDATA reads data from the file VALUES on TAPE5 and the output is written on the teletype when execution is performed in a time sharing mode. VALUES contains the name list inputs read by SDATA. The name list variables are NUMX, the loop terminator; XMU, the mean separation time; RNDPRM, the random number seed.

Figure 9.0-1 shows a sample input and corresponding output produced by SDATA. The output lists the mean which was input and then two columns of interarrival times for this distribution. The left column gives the time to the next arrival relative to the last arrival while the right column sums these times relative to a starting value of zero.
```

        LIST,VALUES
    $VALUES
    NUMX=10,XMU=.056818,RNDPRM=1234567.,XMAX=1.$
    $VALUES
NUMX=0$
[
[ RUNX,I=SDATA
[ LGO
MEAN = .056818
.004337 . }00433
.044886 . 049222
.005136 . 054358
.000281 . }05464
. }150251 . 20489
. }092633 . 29752
.064904 . }36242
.024143 . 386571
. }192249 . 57882
.034593 .613413
[

```

FIGURE 9.0-1 SAMPLE INPUT AND CORRESPONDING OUTPUT PRODUCED BY SDATA

\subsection*{10.0 POST PROCESSOR PROGRAM}

The DELTA Post Processor Program, PPROC, is a separate executable program which produces an additional report for a DELTA simulation run. The program processes a file which is produced by sorting the DELTA output file TAPE14. The procedure for sorting TAPE14 and executing PPROC is illustrated in Table 4.2-1. A detailed description of the Post Processor Report is presented in Section 5.3.

\section*{APPENDIX: A REPORT OF INVENTIONS}

A diligent review of the work performed under this contract has revealed no new innovation, discovery, improvement or invention.```


[^0]:    
    
    
    
    
    *
    
    
    
     H

